
vMCU: Coordinated Memory
Management and Kernel Optimization

for DNN Inference on MCUs
Size Zheng1,2, Renze Chen1, Meng Li1, Zihao Ye2,

Luis Ceze2,3, Yun Liang1

1Peking University,2University of Washington, 3OctoAI

1

MLSys 2024

Microcontrollers (MCUs)
2

n Microcontrollers can be seen everywhere

Mobile Phone Television Modern Vehicles Industry Robots Smart Home Devices

n Microcontrollers are really small

STM32F411RE
RAM: 128KB

STM32F767ZI
RAM: 512KB

The memory of MCU is usually 2-3 orders of
magnitude smaller than mobile devices, which
makes it challenging to map DNNs onto MCUs

Memory requirements of a
single convolution layer

MCU Memory

2.9X

Deploy DNNs on MCUs
3

n Various approaches work together

Original DNN NAS Quantize Deploy

reduce ~10-100X reduce ~2-4X

Hardware information required

n NAS can be expensive
Deployable

Cannot Deploy

320KB

512KB

128KB

New NAS process is required for new devices
(with lower memory capacity), which often takes
hours or days on GPU.

How to address the “last mile” issue?
can we further reduce ~2X ?

Tensor-level Memory Management
4

n Understanding the memory consumption of DNN

Activation Tensor

Weight Tensor

Workspace Tensor

DNN Operator

Facts:
• Static memory footprint remains the same
• Execution order of operators affect dynamic

memory footprint
• Static memory can be put in read-only Flash
• Minimize dynamic memory foot is important

Static Memory Footprint

!
sum of weight tensors

Dynamic Memory Footprint

depends on scheduling and
optimization methods

?≤ ≤max{	 , } ! +

in Flash

in RAMDynamic FootprintDead Coming
Alive

Can we do better?
5

n Closer to the lower bound
Dynamic Memory Footprint

≤ ≤max{	 , } ! +

in Flash

in RAMDynamic FootprintDead Coming
Alive

+ +

For certain operators, we can!
Out[h,w,k]+=
 In[h+r,w+s,k]*Weight[r,s,k]

Input and Output use the same tensor

In-place update

A special optimization in MCUNet-V2

max{	 }

Lin, J. et al. (2021). “Memory- efficient patch-based
inference for tiny deep learning .” In: Annual Conference
on Neural Information Processing Systems 2021,
NeurIPS 2021

n However…

+ +max{	 } cannot be reduced due to the
existence of FC and Conv layers…

Can we do better?
6

n Our aim: make in-place optimization general!

in Flash

in RAM

FC DEP FC CONV

Previous: only certain operators can
exploit in-place optimization, the total
dynamic footprint remains the same

in Flash

in RAM

FC DEP FC CONV

Ours: make in-place optimization
feasible to every operator, reducing the
dynamic footprint

+ +max{	 } max{	 }+
further reduce ~2X

max{	 }

vMCU: Segment-level Memory Management
7

n General in-place optimization requires fine-grained memory management

n Input and output share the same memory buffer

• Input and output use different read/write pointers
• Make sure that write pointer never steps on alive input data

Memory Abstraction: Ring Buffer
8

n Circular reuse of limited memory resource

Layer 1

Layer 2

Layer 3

Input startOutput start
Input endOutput end

Input start Output start

Input startOutput start

The output of previous layer is the input of the next layer

Ring buffer in RAM

return

return

n Question: what is the minimal size of ring-buffer?
Output step N

Input step N

Data race! Step on alive data!Too small:

Too large:

Input startOutput start

Waste of memory! (back to tensor-level management)

Problem Formalization
9

n Key insight: memory access can be formulated as a linear system

Ring Buffer

Iteration Domain

Access Function

Memory Mapping

Correctness Condition

Optimization Target

Use GEMM as Example
10

Optimal mapping solution:
𝑏!" − 𝑏#$% = min 𝑁,𝐾 − 1

b) Iteration domain:

{𝑆 𝑚, 𝑛, 𝑘 |
1 0 0
0
0

1 0
0 1

𝑚
𝑛
𝑘

−
𝑀
𝑁
𝐾

< 0}

𝑆 𝑚, 𝑛, 𝑘 → 𝐼𝑛 𝑚, 𝑘
c) Access functions:

𝑆 𝑚, 𝑛, 𝑘 → 𝑂𝑢𝑡 𝑚, 𝑛

d) Memory mapping:
𝐼𝑛 𝑚, 𝑘 → 𝑃𝑜𝑜𝑙 𝑚 ∗ 𝐾 + 𝑘 + 𝑏!"
𝑂𝑢𝑡 𝑚, 𝑛 → 𝑃𝑜𝑜𝑙 𝑚 ∗ 𝑁 + 𝑛 + 𝑏#$%

for m,n,k in ranges(M,N,K):
S: Out[m, n] += In[m, k] * W[k, n]

a) GEMM:

𝐼𝑛: 1 0 0
0 0 1

e) Access matrices:

𝑂𝑢𝑡: 1 0 0
0 1 0

f) Mapping vectors:
𝐼𝑛: [𝐾 1]

𝑂𝑢𝑡: [𝑁 1]

Optimization Problem:
min. 𝑏!" − 𝑏#$%
𝑠. 𝑡. 𝐾 − 𝑁 𝑚 − 𝑛 + 𝑘 ≥ 𝑏#$% − 𝑏!"
0 ≤ 𝑚 < 𝑀 0 ≤ 𝑛 < 𝑁 0 ≤ 𝑘 < 𝐾

offset: 𝑏!"
offset: 𝑏#$%

ring bufferhead tail

output data input data

𝑏#$% 𝑏!"

overlapped (reduced)

Implementation for GEMM
11

n Kernel Design

for m=0 to M step 1: //Outer level tiling
for n=0 to N step Seg:
Accum = RegAlloc(Seg,0) //Zero Register array of size Seg
for k=0 to K step Seg:
ValueA = RAMLoad(In[m,k:k+Seg])
ValueB = FlashLoad(Weight[k:k+Seg,n:n+Seg])
for ki=0 to Seg step KI: //Inner level tiling
for ni=0 to Seg step NI:
Res = Dot(ValueA[ki:ki:KI],ValueB[ki:ki+KI,ni:ni+NI])
Accum[ni:ni+NI] += Res

RAMStore(Out[m,n:n+Seg], Accum)
for k=0 to K step Seg:
RAMFree(In[m,k:k+Seg])

Implementation for Convolution
12

n Kernel Design
for n=0 to N step 1: //Outer level tiling
for p=0 to P step 1:
for q=0 to Q step 1:
for k=0 to K step Seg:
Accum = RegAlloc(Seg,0) //Register array of size Seg
for r=0 to R step 1:
for s=0 to S step 1:
for c=0 to C step Seg:
ValA = RAMLoad(In[n,p+r,q+s,c:c+Seg])
ValB = FlashLoad(Weight[r,s,c:c+Seg,k:k+Seg])
for ci=0 to Seg step CI: //Inner level tiling
for ki=0 to Seg step KI:
Res = Dot(ValA[ci:ci+CI],ValB[ci:ci+CI,k:ki+KI])
Accum[ki:ki+KI] += Res

RAMStore(Out[n,p,q,ki:ki+KI], Accum)
for c=0 to C step Seg:
RAMFree(In[n,p,q,c:c+Seg])

Convolution is a hybrid of
depthwise and GEMM

Handle Multiple Layers
13

n Network topology also affect memory footprint

conv1x1

depthwise3x3

conv1x1

add

Step 1 Step 2 Step 3

add add add
store store store

1x1

1x1

1x1

3x3

1x1

1x1

1x1

3x3

1x1

1x1

1x1

3x3

Bottleneck

w
rit

e
ba

ck
 to

 e
vi

ct
 in

pu
t d

at
a

3x3 buf

Tensor A

Tensor B

Tensor C

Tensor D

Tensor E

1x1 buf

1x1 buf

…

Skip connection
causes Tensor A
alive for a long time

If we can fuse these
layers into one
operator, we can
effectively reduce
memory footprint
from sizeof(Tensor A)
+ sizeof(Tensor B) +
sizeof(Tensor C) to
sizeof(Tensor A),
which can be >2X

Fusion

Compiler Support
14

n Write kernels for MCU can be annoying…

We provide a Python DSL
and compiler support for
programming MCU kernels

• With native Python interpreter
• Wrapper for MCU SIMD intrinsic
• Generate C code for MCU

Link:
https://github.com/KnowingNot
hing/Domino/tree/master/testin
g/mculib/python/mculib

Evaluation Setup
15

n We use two MCU dev board for evaluation

STM32F411RE
RAM: 128KB

STM32F767ZI
RAM: 512KB

n Baseline: TinyEngine (from MCUNet)

n Benchmark:

Single Operator Evaluation
16

n Pointwise convolution (GEMM) memory reduction

STM32F411RE
RAM: 128KB• Reduce 12%-49.5% memory consumption (~2X)

Single Operator Evaluation
17

n Pointwise convolution (GEMM) energy and latency reduction

• Reduce 20%-53% energy (~2X)
• Reduce 18%-40% latency

STM32F767ZI
RAM: 512KB

Multi-Layer Evaluation
18

n Inverted bottleneck in MCUNet

• MCUNet-5fps-VWW
• Whole DNN reduce 61.5%

memory

STM32F411RE
RAM: 128KB

• MCUNet-320KB-ImageNet
• Whole DNN reduce 58.6%

memory

STM32F767ZI
RAM: 512KB

Summary
19

n Segment-level memory management
• Generalize in-place optimization to GEMM and convolution
• Use ring-buffer and linear-system to minimize memory requirements
• Design kernels and provide Python DSL for programming

n Future work
• LLM on MCU? Flash-attention, MLP…
• Multiple MCU cooperation…
• Leverage Flash to swap data…

