
MoteNN: Memory Optimization via Fine-grained Scheduling for
Deep Neural Networks on Tiny Devices

Renze Chen
Peking University
Beijing, China
crz@pku.edu.cn

Zijian Ding
Peking University
Beijing, China

zijianding@pku.edu.cn

Size Zheng
Peking University
Beijing, China

zhengsz@pku.edu.cn

Meng Li
Peking University
Beijing, China

meng.li@pku.edu.cn

Yun Liang∗
Peking University
Beijing, China

ericlyun@pku.edu.cn

ABSTRACT

There has been a growing trend in deploying deep neural networks
(DNNs) on tiny devices. However, deploying DNNs on such de-
vices poses significant challenges due to the contradiction between
DNNs’ substantial memory requirements and the stringent memory
constraints of tiny devices. Some prior works incur large latency
overhead to save memory and target only simple CNNs, while oth-
ers employ coarse-grained scheduling for complicated networks,
leading to limited memory footprint reduction. This paper pro-
poses MoteNN that performs fine-grained scheduling via operator
partitioning on arbitrary DNNs to dramatically reduce peak mem-
ory usage with little latency overhead. MoteNN presents a graph
representation named Axis Connecting Graph (ACG) to perform
operator partition at graph-level efficiently. MoteNN further pro-
poses an algorithm that finds the partition and schedule guided by
memory bottlenecks. We evaluate MoteNN using various popu-
lar networks and show that MoteNN achieves up to 80% of peak
memory usage reduction compared to the state-of-art works with
nearly no latency overhead on tiny devices.
ACM Reference Format:

Renze Chen, ZijianDing, Size Zheng,Meng Li, and Yun Liang. 2024.MoteNN:
MemoryOptimization via Fine-grained Scheduling for DeepNeural Networks
on Tiny Devices. In 61st ACM/IEEE Design Automation Conference (DAC
’24), June 23–27, 2024, San Francisco, CA, USA. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3649329.3655922

1 INTRODUCTION

The deployment of deep neural networks (DNNs) on tiny devices
like micro-controller units (MCUs) is increasingly common, en-
abling widespread AI applications in the Internet of Things (IoT)
area [10–12, 17, 25, 27, 28]. These tiny devices typically feature
limited storage, including an SRAM of no more than 2 MB and
an extensible read-only Flash memory of several megabytes. For
∗Corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DAC ’24, June 23–27, 2024, San Francisco, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0601-1/24/06
https://doi.org/10.1145/3649329.3655922

example, the STM32F767ZI MCU includes a 512 KB SRAM and
an extensible Flash with initial capacity of 2 MB. Generally, when
deploying DNNs on tiny devices, model weights are allocated to
Flash with relatively sufficient capacity [5], while the intermediate
tensors during inference must be allocated to the capacity-limited
SRAM. However, even networks tailored for resource-limited de-
vices [4, 7, 8, 10, 11, 16, 21, 24] require large intermeidate-tensor
memory compared to the limited SRAM of tiny devices. Some of
them like MobileNetV2 [16] / BERT-Tiny [9] need large image res-
olution / long token sequence for accuracy, leading to large tensor
sizes. Some of them have complicated structure to enhance model
expressiveness [4, 6–8, 21], incurring more intermediate tensors
residing in memory during inference.

As shown in Table 1, some libraries & frameworks [1, 14, 19, 23]
have been developed for deploying DNNs on tiny devices, but they
focus little on the optimization of memory usage of intermedi-
ate tensors. Works like TinyEngine [10, 11] reduce memory usage
through manually designed patch-based inference, but such ap-
proach introduces significant latency overhead and is limited to
simple CNN structures, thus hard to be applied to more complex
DNNs, such as complicated CNNs like NASNet [4] or transformer
models like BERT-Tiny [9]. Some works [3, 22, 26] find that schedul-
ing the execution order of operators in networks with complicated
structures can effectively reduce memory usage. However, these
memory optimization is limited because they consider only coarse-
grained scheduling, that is, scheduling the network in an operator-
by-operator manner. We find that exploring the scheduling space
inside the operator can reduce memory usage more effectively. By
partitioning the operators into smaller ones and scheduling the
finer-grained graph, greater memory reduction can be achieved.
For example, Figure 1 (a) shows that when we schedule the graph
coarsely, we can optimize peak memory usage to at most 768. But
if we enable more fine-grained scheduling, as shown in Figure 1 (b),
we can reduce peak memory usage to 384. In fact, patch-based infer-
ence used in previous works [11, 20] is a simple case of fine-grained
scheduling, but it’s a specific design and is hard to be applied to
networks other than simple structured CNNs.

Although fine-grained scheduling can greatly reduce memory
usage, it makes operator shapes smaller and the amount of opera-
tors larger, which results in lower hardware utilization and more
kernel invocations, incurring latency overhead. Therefore, memory
optimization via fine-grained scheduling needs to be performed

https://doi.org/10.1145/3649329.3655922
https://doi.org/10.1145/3649329.3655922

DAC ’24, June 23–27, 2024, San Francisco, CA, USA Renze Chen, Zijian Ding, Size Zheng, Meng Li, and Yun Liang

0

4

1

2

3

8 × 64

8 × 64

8 × 16

8 × 16

8 × 16 Input

Linear
(16 → 64)

ReLU

Linear
(64 → 16)

Add

0

19

1

6

7

8

9

10

3

4

5

2

11

12

13

17

18

14

15

16

8 × 16

4 × 16

4 × 32

4 × 32

4 × 16

4 × 16

4 × 16

8 × 16

Input

Slice

Linear
(16 → 32)

ReLU

Linear
(32 → 16)

Add

Add

Concat

(a) Peak Memory: 768 (b) Peak Memory: 384

Memory bottleneck

Figure 1: The graph & schedule & peak memory usage before and

after fine-grained scheduling with the help of operator partition,

where the numbers in nodes indicate execution order.

Table 1: Comparison with prior-art works

Work

Network

Structure

Memory

Reduction

Latency

Overhead

Methods

CMSIS-NN [14]
TFLite-Micro [19] Arbitrary No No Library & Runtime Support

TinyEngine [10, 11]
FDT [20] Simple CNN High Medium Patch-based Inference

Serenity [3]
HMCOS [26] Arbitrary Medium No Coarse-grained Scheduling

MoteNN (Ours) Arbitrary High Low

Graph-level Analysis,

Fine-grained Scheduling

under certain latency constraint. But there are quite a lot of par-
tition schemes for each operator in the network, which together
form a large combinatorial optimization space. How to search for
a network partition scheme and corresponding schedule to minimize
peak memory under the latency constraint is challenging.Meanwhile,
for operators with overlapped sliding-windows such as convolution
or pooling, partitioning the output operator may cause overlapped
input dependency, leading to a large amount of re-computation
overhead [11, 20]. How to deal with the overlapped sliding-windows
poses another challenge.

To address these challenges, we propose MoteNN, a sophisti-
cated memory optimizer designed for efficient fine-grained sched-
uling of DNNs on tiny devices. We find that since peak memory
usage is determined by the maximum memory usage during ex-
ecution, many combinations of partition strategies for operators
have the same effect. Therefore, it is inefficient to explore each par-
tition strategy for each operator separately. We introduce a graph
representation called Axis Connecting Graph (ACG) to consider
partitioning operators at the graph level, significantly reducing the
optimization space. With the help of ACG, we design an optimiza-
tion algorithm to select sub-graphs based on the current memory
bottleneck to further reduce the optimization space. In addition,
to avoid the large computation overhead caused by overlapped
sliding-windows, we can carefully manage and allocate memory
for the input blocks shared by multiple output blocks to reduce
computation overhead.

In summary, this paper makes the following contributions:
• WeproposeMoteNN, amemory optimizer using fine-grained
scheduling for DNN.

• We propose a graph representation named "Axis Connecting
Graph" (ACG) to model graph-level partition scheme for
building fine-grained graph.

• We design an optimization algorithm based on ACG and
memory bottleneck to partition and schedule network to
reduce its peak memory usage.

We evaluate MoteNN extensively with popular vision and lan-
guagemodels, e.g., MobileNetV2 [16],MCUNetV2 [10], BERT-Tiny [9],
etc, and networks with complex structures, e.g., NASNet [4]. Experi-
ment results show thatMoteNN can reduce up to 80% peakmemory
usage compared to state-of-the-arts scheduling frameworks with
less then 5% latency overhead, enabling many powerful networks
deployed on memory-limited tiny devices.

2 PRELIMINARIES

Computation Graph. A DNN is often represented as a graph𝐺 .
𝑉 = V(𝐺) represents operators, where each operator has several
input tensors and one output tensor 𝐸 = E(𝐺) ⊆ 𝑉 ×𝑉 represents
the dependencies between operators, such as (𝑣1, 𝑣2) ∈ 𝐸 indicates
that operator 𝑣2 depends on 𝑣1 (usually, this means that the output
tensor of 𝑣1 is one of the input tensors of 𝑣2).

We use pre(𝑣), suc(𝑣), sp-axes(𝑣), re-axes(𝑣), 𝑣@𝑖 , 𝑣$𝑖 , and
size(𝑣) to represent the predecessors, successors, spatial-axes,
reduce-axes, 𝑖th spatial-axis, 𝑖th reduce-axis, and output tensor size
of 𝑣 ∈ 𝑉 , respectively. Here spatial-axes means the axes/dimensions
of output tensor, while reduce-axes refers to the loop axes for reduc-
tion. For example, in Matmul 𝐶 [𝑚,𝑛] = ∑

𝑘 𝐴[𝑚,𝑘] × 𝐵 [𝑘, 𝑛],𝑚,𝑛
are spatial-axes while 𝑘 is reduce-axis. Note that there’s size(𝑣) =∏

𝑣@𝑖∈sp-axes(𝑣) |𝑣@𝑖 |, where |𝑣@𝑖 | is the length of 𝑣@𝑖 .
Graph Schedule & Memory Usage & Memory Bottlenecks.

A topo-order 𝑇 = (𝑣1, 𝑣2, ..., 𝑣𝑛) ofV(𝐺) is a schedule of graph 𝐺 .
Assuming that 𝑖 represents the time point when the 𝑖𝑡ℎ operator is
completed, we can get the start/end of the lifetime of each operator
𝑣𝑖 : start(𝑖) = 𝑖−1, end(𝑖) = max𝑣𝑗 ∈suc(𝑣𝑖) 𝑗 . The set of tensors that
are alive during the execution of operator 𝑣𝑖 is alive(𝑖) = {𝑣 𝑗 ∈ 𝑇 |
start(𝑗) ≤ 𝑖 ≤ end(𝑗)}. The memory usage of operator 𝑣𝑖 during
execution is 𝑀𝑖 =

∑
𝑢∈alive(𝑖) size(𝑢); and the peak memory

usage during the execution of𝐺 is𝑀𝑝𝑒𝑎𝑘 = max1≤𝑖≤𝑛𝑀𝑖 . The ten-
sors that contribute to the peak memory usage are called memory

bottlenecks: 𝑉𝑚𝑏 =
⋃{alive(𝑖) | 𝑀𝑖 = 𝑀𝑝𝑒𝑎𝑘 }.

Example. In Figure 1 (a), during 𝑣3’s execution there are three
tensors alive: 𝑣0, 𝑣2, and 𝑣3. Therefore,𝑀3 = 8 ∗ 16+ 8 ∗ 64+ 8 ∗ 16 =
768, which is the peak memory usage of this graph under such
schedule. Thus 𝑣0, 𝑣2, 𝑣3 are memory bottlenecks. In Figure 1 (b),
during 𝑣16’s execution there are five tensors alive: 𝑣2, 𝑣10, 𝑣13, 𝑣15,
and 𝑣16. Therefore,𝑀16 = 4∗16+4∗16+4∗16+4∗32+4∗16 = 384,
which is the peak memory usage of this graph under such schedule.
Thus 𝑣2, 𝑣10, 𝑣13, 𝑣15, 𝑣16 are memory bottlenecks.

3 METHODS

3.1 Insights of MoteNN

We aim to optimize the peak memory usage, which refers to the
maximum memory occupancy during execution. Our methods are
based on two insights.

Insight 1: It is inefficient to consider the operator partition sepa-
rately for each operator. Partitioning separately will introduce much
redundancy and is hard to model the connections among operators.
For instance, in Figure 2 (b), splitting the two Linear operators

MoteNN: Memory Optimization via Fine-grained Scheduling for Deep Neural Networks on Tiny Devices DAC ’24, June 23–27, 2024, San Francisco, CA, USA

8 × 8 I

L

L

L

8 × 64

8 × 32

8 × 16

8 × 8 I

L

L

L

8 × 64

8 × 32

8 × 16

S S

C

4 × 64

8 × 64

S S

C

4 × 16

8 × 16

8 × 8 I

L

L

L

8 × 64

8 × 32

4 × 16

S S

L

4 × 32

C8 × 16

(a) Peak: 768 (b) Peak: 768

L Linear

I Input

S Slice

C Concat

(c) Peak: 768

8 × 8 I

S

L

L

4 × 8

4 × 64

4 × 16

L L

L

4 × 32

C8 × 16

L

S

(d) Peak: 416

Memory bottleneck

Figure 2: Different partition choices lead to different peak memory.

separately in (a) has no impact on the peak memory. We need to
consider the partition and scheduling of operators at graph level.

Insight 2: It is important to focus on memory bottlenecks. Only
partitioning memory bottlenecks tensors can optimize peak mem-
ory. For instance, the tensors of size 8 × 32 and 8 × 64 are memory-
bottlenecks in Figure 2 (a). The partition of non-bottleneck tensors
like (c) doesn’t impact the peak memory, while (d) splits bottlenecks
of (a) and nearly halves the peak memory. In practice, memory
bottlenecks are mostly inside certain cells [3, 22, 26], which are
appropriate sub-graphs for operator partitioning.

3.2 Workflow Overview

Figure 4 shows the workflow of MoteNN. It accepts a model de-
scription like ONNX as input. The analyzer analyzes the model
and builds an Axis Connecting Graph (ACG) based on the axis
mappings of each operator and the dependency between operators.
The optimizer then searches for feasible partition schemes and cor-
responding schedules based on ACG and memory-bottlenecks. It
uses a profiler & simulator to measure the latency of operators with
specific shapes and estimate the latency of the entire graph. Then,
MoteNN generates code based on the searched fine-grained graph
and operator schedule. Finally, the generated code is compiled into
a binary file for deployment on the target device.

3.3 Axis Connecting Graph (ACG)

Based on Insight 1, we need to consider operator partition at the
graph level. When considering partition at the operator level, we
need to get the axes (spatial-axis, reduce-axis) of an operator and
partition along these axes. Likewise, to consider operator partition
and scheduling at the graph level, we need a data structure to
represent the "axes" of a subgraph. To this end, we propose Axis
Connecting Graph (ACG) that represents the connection among the
axes of different operators in a graph. The "axis" of a subgraph in
the computation graph is a subgraph of the ACG. ACG represents
the inter-axis dependencies of operators in the form of a graph,
which allows us to consider operator partition from graph-level,
greatly reducing the optimization space that needs to be explored.

Given a graph𝐺 , we define its Axis Connecting Graph (ACG)

as 𝐴 = A(𝐺), where
(1) For ∀𝑣 ∈ V(𝐺), 𝑣@𝑖 ∈ sp-axes(𝑣), there’s 𝑣@𝑖 ∈ V(𝐴).
(2) For ∀𝑣 ∈ V(𝐺), 𝑣$𝑖 ∈ re-axes(𝑣), there’s 𝑣$𝑖 ∈ V(𝐴).
(3) For ∀(𝑢, 𝑣) ∈ E(𝐺), 𝑖, 𝑗 ≥ 0, if |𝑢@𝑖 | = |𝑣@ 𝑗 | and 𝑢@𝑖, 𝑣@ 𝑗

correspond to a same spatial-loop, then (𝑢@𝑖, 𝑣@ 𝑗) ∈ E(𝐴).
(4) For ∀(𝑢, 𝑣) ∈ E(𝐺), 𝑖, 𝑗 ≥ 0, if 𝑢@𝑖 and 𝑣$ 𝑗 correspond to a

same reduce-loop, then (𝑢@𝑖, 𝑣$ 𝑗) ∈ E(𝐴).

For instance, consider a Linear operator node 𝑣 with shape 𝑁 × 𝐾
and its input node 𝑢 with shape 𝑁 ×𝐶 . The first axis of 𝑢 and 𝑣 cor-
respond to a same spatial-axis, and the second axis of𝑢 corresponds
to the reduce-axis of 𝑣 , yielding (𝑢@0, 𝑣@0), (𝑢@1, 𝑣$0) ∈ E(𝐴).
Figure 3 (a) presents the graph of an inverted-bottleneck in Mo-
bileNetV2 [16], and (b) shows sub-graphs of its ACG, where there
are four connected sub-graphs, corresponding to the height-axis of
Input, width-axis of Input, channel-axis of Input, and channel-
axis of DW-Conv, respectively.

With the help of ACG, we can represent the operator partition
at graph level. For a graph𝐺 and its subgraph 𝑆 ⊆ 𝐺 , we define a
Partition Scheme 𝑝 = (𝑆,𝐴,𝑉𝐼 ,𝑉𝑂 , 𝑛), where𝐴 is a connected sub-
graph of A(𝑆), 𝑉𝐼 ⊆ V(𝑆) represents the input nodes of 𝑆 (which
can be explicitly split by Slice), 𝑉𝑂 ⊆ V(𝑆) represents the output
nodes of 𝑆 (which can be explicitly merged by Concat), and 𝑛 is the
number of partitions. Figure 5 shows how to partition a sub-graph
based on a partition scheme. There are two input and two output
nodes. 𝑢1 is split while 𝑢2 is not. 𝑣1 is split along the spatial-axis,
while 𝑣2 is split along the reduce-axis. The subgraph is split into
two parts, with𝑢1 being split into two parts using a Slice operator,
and 𝑢2 being reused in both parts. Parts of 𝑣1 are merged using a
Concat operator in the end, while parts of 𝑣2 are accumulated using
an Add operator. Figure 3 (c) (d) shows two examples of partitioning
sub-graphs of (a) along sub-ACG of (b).

3.4 Handling Overlapped Sliding-window

In operators like Conv2d with kernel sizes greater than 1, a sliding-
window reduction occurs along the height/width axis, enlarging
receptive fields. If multiple Conv2d operators are sequentially used
in a sub-graph, this enlargement effect accumulates, significantly
increasing computation [11]. Figure 6 (a) demonstrates consecutive
3 × 3 Conv2d, (b) illustrates block dependencies when partitioning
the sub-graph into 𝑛 segments starting from the output, and (c)
depicts the partitioned sub-graph with its additional computation
and peak memory ratios. To lower memory usage, increasing 𝑛 is
necessary, but this leads to more extra computation. An alternative
method, used by some hardware-level accelerator design [15, 18],
infers block boundaries based on dependencies and splits overlap-
ping parts into separate blocks, as shown in Figure 6 (d), avoiding
extra computation but slightly increasing memory usage. However,
this approach implemented in software-level can result in many
small operators, negatively affecting performance, as shown in Ta-
ble 3. Meanwhile, both methods above have limitations in complex
CNNs with varying numbers of sliding-window operators in differ-
ent paths. As shown in Figure 6 (f), the receptive fields from 𝑣5 to 𝑣1
differ in the two paths due to the different numbers of Conv2d. It is
hard to partition sub-graph in such situation with the above methods.

We propose a compromised solution, which keeps the partition
granularity consistent across layers, as shown in Figure 6 (e). Before
each block is executed, we use a BlockConcat kernel to merge the
input blocks that it depends on (for each input block, it will only
copy the data portion consumed by the output block). The overhead
introduced by BlockConcat can be generally ignored as shown in
Table 3. This method incurs a little more memory usage than the
previous ones. In most networks, cell layers (𝐿 of Figure 6) typically
ranges from 2 to 6 [2, 4, 6–8, 10, 11, 13, 16, 21, 24]. Here, we take

DAC ’24, June 23–27, 2024, San Francisco, CA, USA Renze Chen, Zijian Ding, Size Zheng, Meng Li, and Yun Liang

Input

PW-Conv

DW-Conv

PW-Conv

Add

𝑣0

𝑣1

𝑣2

𝑣3

𝑣4

𝐻 ×𝑊 × 𝐶

𝐻 ×𝑊 ×𝐾

𝐻 ×𝑊 ×𝐾

𝐻 ×𝑊 × 𝐶

𝐻 ×𝑊 × 𝐶(a)

𝑣0@0

𝑣1@0

𝑣2@0

𝑣3@0

𝑣4@0

𝑣0@1

𝑣1@1

𝑣2@1

𝑣3@1

𝑣4@1

𝑣0@2

𝑣1$0𝑣1@2

𝑣2@2

𝑣3$0𝑣3@2

𝑣4@2(b)

Input

PW-Conv

DW-Conv

Add

Add

Slice

PW-Conv

DW-Conv

Slice

PW-Conv

𝐻 ×𝑊 × 𝐶

𝐻 ×𝑊 × 𝐾

𝐻 ×𝑊 ×
𝐾

2

𝐻 ×𝑊 ×
𝐾

2

𝐻 ×𝑊 × 𝐶

𝐻 ×𝑊 × 𝐶

𝐻 ×𝑊 × 𝐶(c)

Input

DW-Conv

Add

Add

PW-Conv

PW-Conv

DW-Conv

PW-Conv

PW-Conv

𝐻 ×𝑊 × 𝐶

𝐻 ×𝑊 ×
𝐾

2

𝐻 ×𝑊 ×
𝐾

2

𝐻 ×𝑊 × 𝐶

𝐻 ×𝑊 × 𝐶

𝐻 ×𝑊 × 𝐶(d)

PW-Conv Point-wise Convolution DW-Conv Depth-wise Convolution

Figure 3: Example of Axis Connecting Graph (ACG). (a) Graph of an inverted-bottleneck in MobileNetV2 [16]. (b) ACG of graph in (a).

(c) Partition sub-graph {𝑣1, 𝑣2, 𝑣3} into two parts along ACG {𝑣1@2, 𝑣1@2, 𝑣3$0}. (d) Partition sub-graph {𝑣0, 𝑣1, 𝑣2, 𝑣3} into parts along ACG

{𝑣1@2, 𝑣1@2, 𝑣3$0}.

Device

Analyzer Optimizer

Profiler &
Simulator

Model

Axis
Connecting

Graph (ACG)
Code

Search

Compile
& Deploy

Config Latency

Op. Latency Cache

Figure 4: Workflow overview of MoteNN

X1 X2

Subgraph

Y1 Y2

𝑢1 𝑢2

𝑣1 𝑣2

𝑢1@𝑖

𝑣1@𝑗 𝑣2$𝑘

ACG Subgraph

X1

X2

Subgraph

Y1,1 Y1,2

Slice

Subgraph

Y2,1 Y2,2

Slice

Concat Add

𝑢1

𝑢2

𝑣2𝑣1

Input Node Output Node

(a) (b) (c)

Figure 5: Illustration of graph partition along ACG. (a) Graph for

partition. (b) ACG that partitioning along (𝑖, 𝑗, 𝑘 ≥ 0). (c) Result fine-
grained graph after partition.

𝐿 = 4, and the peak memory ratio of our solution is 𝑛+16
2𝑛 , which is

larger than the method in Figure 6 (c) by 7
𝑛 − 7

𝐻
. As 𝑛 increases, i.e.,

when the memory usage is lower, the difference becomes smaller.

3.5 Optimization Algorithm

With the aid of ACG, we design a beam search algorithm based
on Insight 2 to optimize peak memory under a given latency con-
straint, as shown in Algorithm 1. It iteratively partitions the graph
(line 5-17) by identifying memory bottlenecks (line 6), selecting the
cell containing bottlenecks (lines 8), and the connected sub-ACG
containing bottlenecks within a cell (lines 9). Maximum heap P
maintains 𝛽 best optimization states (line 12). Each state 𝑃 contains
many partition schemes 𝑝 . Each sub-ACG 𝐴 can generate several
partition schemes 𝑝 = (𝑆,𝐴,𝑉𝐼 ,𝑉𝑂 , 𝑛) with different partition num-
bers 𝑛, which are appended to current states to construct new ones
(line 11). Top-𝛽 new states are kept for future iterations (line 13-16).
We define LessThen (line 3-4) for the heap (line 12), which com-
pares peak memory first if latency meets the constraint otherwise
compares latency first (line 4).

Details. GenSchemes generates different partition schemes 𝑝 =

(𝑆,𝐴,𝑉𝐼 ,𝑉𝑂 , 𝑛) for a given ACG 𝐴 by enumerating factors 𝑛 of the
axis-length of 𝐴. Schedule is responsible for scheduling the fine-
grained graph.We run this function frequently, and the graph it han-
dles is complex after partitioning. Therefore, we choose the fastest
reverse-post-order algorithm with linear complexity in terms of
the network size; it can achieve near-optimal peak memory in most
cases [26]. Apply applies the partition schemes on a given graph to

produce a new fine-grained graph. PeakMem and MemBottlenecks
are implemented using the formulas in Section 2. Latencymeasures
the performance of the graph.
Algorithm 1:Memory-bottleneck-aware Beam Search
input :Graph:𝐺 . Latency constraint ratio: 𝛿 . Beam width: 𝛽
output :Fine-grained graph after operator partition:𝐺 ′ . Schedule:𝑇 ′

1 C𝑟𝑒𝑠𝑡 := all cells of𝐺 ; P := {{DummyPartitionScheme}};
2 𝐺 ′ := 𝐺 ; 𝑇 ′ := Schedule(𝐺 ′); 𝐿⊤ := Latency(𝐺 ′) × 𝛿 ;
3 def LessThen(𝑃1, 𝑃2):
4 return if 𝑃1 .𝐿 ≤ 𝐿⊤ ∧ 𝑃2 .𝐿 ≤ 𝐿⊤ then (𝑃1 .𝑀, 𝑃1 .𝐿) <

(𝑃2 .𝑀, 𝑃2 .𝐿) else (𝑃1 .𝐿, 𝑃1 .𝑀) < (𝑃2 .𝐿, 𝑃2 .𝑀) ;
5 while 𝑡𝑟𝑢𝑒 do

6 𝑉𝑚𝑏 := MemBottlenecks(𝐺 ′,𝑇 ′);
C𝑚𝑏 := {𝐶 ∈ C𝑟𝑒𝑠𝑡 | V (𝐶) ∩𝑉𝑚𝑏 ≠ ∅};

7 if C𝑚𝑏 = ∅ then break;
8 𝐶 := argmax𝐶∈C𝑚𝑏

Σ𝑣∈ (V(𝐶)∩𝑉𝑚𝑏) size(𝑣) ; C𝑟𝑒𝑠𝑡 := C𝑟𝑒𝑠𝑡 \ {𝐶 };
9 A𝑚𝑏 := {𝐴 ∈ all valid connected sub-graphs of A(𝐶) | ∃𝑣 ∈

𝑉𝑚𝑏 , 𝑖 ≥ 1 s.t. (sp-axes(𝑣) ∪ re-axes(𝑣)) ∩ V(𝐴) ≠ ∅};
10 for𝐴 ∈ A𝑚𝑏 sorted by depth do

11 P′ := {𝑃 ∪ {𝑝 } | 𝑃 ∈ P, 𝑝 ∈ GenSchemes(A)};
12 P := MaxHeap(LessThen);
13 for 𝑃 ∈ P′ do
14 𝐺 ′ := Apply(𝐺 , 𝑃); 𝑇 ′ := Schedule(𝐺 ′);
15 𝑃.𝑀 := PeakMem(𝐺 ′,𝑇 ′); 𝑃.𝐿 := Latency(𝐺 ′);
16 P.push(𝑃) ; if |P | > 𝛽 then P.pop_largest() ;

17 𝑃 := P.get_smallest() ;𝐺 ′ := Apply(𝐺 , 𝑃);𝑇 ′ = Schedule(𝐺 ′);

18 return𝐺 ′,𝑇 ′ ;

4 EVALUATION

4.1 Experiment Setup

Table 2: Networks for evaluation

Network Names Input Size

NASNet-A [4], DARTS [7] 32 × 32 × 3 (CIFAR-10)

NASNet-A [4], DARTS [7], FPNAS [8] 224 × 224 × 3 (ImageNet)

MobileNetV2 [16], MCUNetV2 [11] 224 × 224 × 3 (ImageNet)

BERT-Tiny [9] 512 × 128

We select STM32H7A3ZI-QMCUwith ARM Cortex-M7 core as our
test platform. It has 1.4 MB SRAM but can simulate lower memory
constraints. We utilize CMSIS-NN [14] as the operator library for
MoteNN and baselines and implement a kernel of BlockConcat
proposed in Section 3.4 for MoteNN. We use Mbed with gcc-arm
as the compilation system. We set 𝛽 = 8 in Algorithm 1 of MoteNN.
We use Intel(R) Xeon(R) Silver 4210RCPU to run optimization
processes, each of which is completed within 2 minutes.

We evaluate MoteNNwith 8 popular networks shown in Table 2.
For NASNet-A [4] and DARTS [7], different datasets (input sizes)

https://github.com/mit-han-lab/tinyengine/blob/main/assets/mcunetv2_large.tflite

MoteNN: Memory Optimization via Fine-grained Scheduling for Deep Neural Networks on Tiny Devices DAC ’24, June 23–27, 2024, San Francisco, CA, USA

𝑛 parts

𝐻 ×𝑊 × 𝐶

𝐻 ×𝑊 × 𝐶

𝐻 ×𝑊 × 𝐶 3x3 Conv

3x3 Conv

3x3 Conv

Input

𝐿
layers

Peak Mem: 2𝐻𝑊𝐶

#MAC: 9𝐿𝐻𝑊𝐶2

(a) (b)

Peak Mem Ratio:
1+2/𝑛 𝐻+2(2𝐿−1)

2𝐻

Extra #MAC Ratio: 𝑛(𝐿 − 1)/𝐻

(c)

Peak Mem Ratio:
1+𝐿/𝑛 𝐻+𝐿 𝐿−1

2𝐻

Extra #MAC Ratio: ≈ 0

(d)

Peak Mem Ratio:
𝑛+𝐿2

2𝑛

Extra #MAC Ratio: ≈ 0

(e) (f)

3x3 Conv

3x3 Conv

3x3 Conv

3x3 Conv

3x3 Conv

Input

𝑣1

𝑣0

𝑣2

𝑣3
𝑣4

𝑣5

Figure 6: (a) 𝐿 consecutive 3 × 3 Conv2d. (b) Dependency between blocks if we split the output into 𝑛 parts. (c) (d) (e) Three solutions to split the

subgraph. "Extra #MAC Ratio" means the ratio of extra #MAC to original one. "Peak Memory Ratio" means the ratio of current peak memory to

original one. (f) Example of a subgraph where different paths have different numbers of Conv2d, hard to be handled by solutions in (c) and (d).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

NASNet-A (CIFAR-10)

DARTS (CIFAR-10)

NASNet-A (ImageNet)

DARTS (ImageNet)

FPNAS

MobileNetV2

MCUNetV2

BERT-Tiny

Peak Memory (100KB)

TinyEngine HMCOS MoteNN

512KB320KB256KB

Figure 7: Comparison ofminimum peakmemory usage achieved by

MoteNN and baselines on different networks (int8 quantization).

0

10

20

30

40

50

60

70

80

0

500

1000

1500

2000

2500

3000

96 128 160 192 224 256 288 320 352 384 416 448

M
em

o
ry

 R
at

io
 (

%
)

Pe
ak

 M
em

o
ry

 U
sa

ge
 (

K
B

)

Input Image Resolution

HMCOS MoteNN Memory Ratio

Figure 8: Peak memory (int8) with different input image resolu-

tion for NASNet-A (ImageNet). "Memory ratio" refers to the ratio of

memory usage between MoteNN and HMCOS.

correspond to different network architectures. For MCUNetV2 [11],
we use the released MCUNetV2-SE-Large model. These networks
have either large tensor sizes or complex topologies, suffering from
high peak memory during inference although they are tailored for
resource-limited devices.

We compare MoteNN with two state-of-the-art open-sourced
memory optimizers for DNN on tiny devices: TinyEngine [10, 11]
and HMCOS [26]. TinyEngine proposes patch-based inference to
optimize memory of simple CNNs. HMCOS is the state-of-the-art
memory-aware graph scheduler for complicated networks.

4.2 Peak Memory Usage Evaluation

We evaluate and compare the peak memory usage optimized by
TinyEngine, HMCOS, and MoteNN. We run MoteNN with latency
overhead constraint 𝛿 = 1.05 in Algorithm 1, that is, the execution
latency overhead introduced by fine-grained scheduling should be
no more than 5%. To demonstrate MoteNN’s effectiveness, we set
several memory constraints (256KB, 320KB, 512KB, 1MB, and 2MB),
which are common for tiny devices.

Results. Figure 7 shows the evaluation results (with int8 as
quantization precision). For all networks, MoteNN achieves the
smallest peak memory usage. MoteNN achieves average 46% (up to
72%) peak memory usage reduction compared to TinyEngine, and
average 58% (up to 87%) peak memory usage reduction compared
to HMCOS. We also observe that MoteNN can meet the 320KB

memory limit for all the networks, while TinyEngine can satisfy
such constraint for only MobileNetV2 and MCUNetV2, and HM-
COS cannot satisfy such limit for any test networks. Furthermore,
MoteNN can meet the 256KB memory limit for 3 networks, while
TinyEngine can satisfy it for only 2 networks. If we change the
quantization precision from 8-bit to 16-bit or 32-bit, MoteNN can
easily meet memory constraints of 1MB or 2MB respectively on
all 8 benchmark networks, while TinyEngine / HMCOS can only
satisfy 1MB (2MB) constraint on 4 / 2 networks for 16-bit (32-bit)
quantization precision.

We observe that for NASNet, DARTS and FPNAS, HMCOS per-
forms better than TinyEngine. This is because TinyEngine can
not optimize networks with complicated structures. But for Mo-
bileNetV2 and MCUNetV2, TinyEngine is better than HMCOS as
HMCOS cannot exploit intra-operator scheduling space. The reason
why MoteNN can achieve significant peak memory usage reduc-
tion is that it performs fine-grained scheduling via graph-level
tensor partition, exploiting much more scheduling opportunities
inside each tensor compared with TinyEngine and HMCOS.

Memory Usages with Different Input Sizes. Note that for
NASNet and DARTS with dataset CIFAR-10, memory footprint re-
duction of MoteNN compared to HMCOS is at most 30%, while
for dataset ImageNet, such reduction is at least 50%. Such variation
is mainly because MoteNN can exploit more memory reduction
opportunities via fine-grained scheduling on networks with larger
shapes. To further demonstrate the impact of input sizes, we com-
pareMoteNNwithHMCOS under different input image resolutions.
Figure 8 shows the peak memory usage optimized by MoteNN and
HMCOS, as well as the ratio between the two, when changing the
input image resolution of NASNet-A (ImageNet). As the input im-
age resolution increases, the benefits of MoteNN over HMCOS
increases and gradually reaches a saturation point as the resolution
continues to increase. This is consistent with the formula for peak
memory ratio in Figure 6 (e), 𝑛+𝐿

2

2𝑛 , as the number of partitions 𝑛
increases with higher input image resolutions, causing the value of
𝑛+𝐿2
2𝑛 to decrease, but at a slower rate.

4.3 Latency Overhead Evaluation

Full Network Latency Overhead. In this section, we analyze
the latency overhead introduced by MoteNN. We set the latency
overhead constraint 𝛿 in Algorithm 1 as 1.05, 1.02, 1.01 (5%, 2%, 1%
latency overhead) and collect some sample points of memory ratio
(the ratio between peak memory optimized by MoteNN and HM-
COS) and latency overhead of MoteNN when optimizing NASNet-
A (ImageNet). As shown in Figure 9, to optimize memory ratio to
60%, the latency overhead is less than 1%, which is negligible. How-
ever, to further optimize it, the graph should be more fine-grained,

https://github.com/mit-han-lab/tinyengine/blob/main/assets/mcunetv2_large.tflite

DAC ’24, June 23–27, 2024, San Francisco, CA, USA Renze Chen, Zijian Ding, Size Zheng, Meng Li, and Yun Liang

0

0.5

1

1.5

2

2.5

3

3.5

4

30 40 50 60 70 80 90 100

La
te

n
cy

 O
ve

rh
ea

d
 (

%
)

Memory Ratio (%)

Figure 9: Peak memory and latency overhead curve of NASNet-A

(ImageNet). "Memory ratio" refers to the ratio of memory usage

between MoteNN and HMCOS.

0

5

10

15

20

25

30

35

150 170 190 210 230 250 270 290 310 330

La
te

n
cy

 O
ve

rh
ea

d
 (

%
)

Peak Memory Usage (KB)

TinyEngine MoteSMoteNN

Figure 10: Peak memory usage and latency overhead curves of

MCUNetV2-SE-Large optimized by TinyEngine and MoteNN

resulting in more kernel invocations and lower hardware utilization
due to smaller operators. Therefore, the latency overhead increases
rapidly when the memory ratio is reduced.

Single Operator Latency Overhead.We further conduct an
experiment to evaluate the performance degradation caused by par-
titioning a Conv2d operator along both height-axis and width-axis.
The results are shown in Table 3. We can observe that as the factor
decreases, it incurs more latency overhead. For instance, reducing
the factor from 16 to 8 only incurs less than 0.5% extra latency
overhead, while reducing it from 2 to 1 leads to 40% extra latency
overhead. Table 3 also shows that the latency of all BlockConcat
kernels, relative to the total latency, is typically less than 2%. How-
ever, for extremely small partition factor, the ratio goes up because
of too many kernel invocations.

Comparison to LatencyOverhead of TinyEngine.Wepresent
a comparison between MoteNN and TinyEngine in terms of peak
memory usage and latency overhead in MCUNetV2-SE-Large. For
TinyEngine, we obtain three optimization results with patch sizes
of 2, 4, and 7. For MoteNN, we set the latency overhead constraint
𝛿 = 1.1 and show three optimization states during search. Fig-
ure 10 shows the results. We can observe that both TinyEngine and
MoteNN can easily reduce peak memory from the original 1470KB
to within 320KB. However, TinyEngine’s latency overhead is much
larger than MoteNN due to the significant computation overhead
caused by the patch-based inference, as shown in Figure 6 (c). In
contrast, our approach can achieve more memory reduction with
much less computation overhead.

5 CONCLUSION

This paper proposes MoteNN, a method designed to optimize peak
memory usage during the deployment of DNNs on tiny devices.
It introduces Axis Connecting Graph to model graph-level axis
relations, and efficiently searches graph partition & schedule based
on memory bottlenecks. Our evaluation results show that MoteNN

Table 3: Performance of partitioning 3 × 3 Conv2d along

the height-axis and width-axis. The operator has a shape of

height=32,width=32,in-channel=8,out-channel=8.

Height & Width Partition Factor 16 8 4 2 1

Latency before Partition (us) 6394

Latency after Partition (us) 6416 6448 6528 6656 9216

Total Latency Overhead 0.34% 0.84% 2.09% 4.09% 44.13%

BlockConcat Latency (us) 28 48 108 281 819

Latency Ratio of BlockConcat 0.44% 0.74% 1.66% 4.23% 8.89%

can reduce up to 80% peak memory usage of popular DNNs com-
pared to state-of-the-art works with nearly no latency overhead.

ACKNOWLEDGMENTS

This work is supported in part by the National Natural Science
Foundation of China (NSFC) under grant No.U21B2017.

REFERENCES

[1] Alessandro Capotondi et al. 2020. CMix-NN: Mixed Low-Precision CNN Library
for Memory-Constrained Edge Devices. IEEE TCAS-II (2020), 871–875.

[2] Andrew G. Howard et al. 2017. MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications.

[3] Byung Hoon Ahn et al. 2020. Ordering Chaos: Memory-Aware Scheduling of
Irregularly Wired Neural Networks for Edge Devices. MLSys (2020), 44–57.

[4] Barret Zoph et al. 2018. Learning Transferable Architectures for Scalable Image
Recognition. In CVPR.

[5] Colby Banbury et al. 2021. MicroNets: Neural Network Architectures for Deploy-
ing TinyML Applications on Commodity Microcontrollers. In MLSys. 517–532.

[6] Esteban Real et al. 2019. Regularized Evolution for Image Classifier Architecture
Search. In AAAI.

[7] Hanxiao Liu et al. 2019. DARTS: Differentiable Architecture Search. In ICLR.
[8] Jiequan Cui et al. 2019. Fast and Practical Neural Architecture Search. In ICCV.
[9] Jacob Devlin et al. 2019. Bert: Pre-training of deep bidirectional transformers for

language understanding. NAACL (2019), 4171–4186.
[10] Ji Lin et al. 2020. MCUNet: Tiny Deep Learning on IoT Devices. NIPS (2020).
[11] Ji Lin et al. 2021. MCUNetV2: Memory-Efficient Patch-based Inference for Tiny

Deep Learning. NIPS (2021).
[12] Josse Van Delm et al. 2023. HTVM: Efficient Neural Network Deployment On

Heterogeneous TinyML Platforms. In DAC. 1–6.
[13] Kaiming He et al. 2016. Deep residual learning for image recognition. In CVPR.
[14] Liangzhen Lai et al. 2018. CMSIS-NN: Efficient Neural Network Kernels for Arm

Cortex-M CPUs.
[15] Manoj Alwani et al. 2016. Fused-layer CNN accelerators. In MICRO. 1–12.
[16] Mark Sandler et al. 2019. MobileNetV2: Inverted Residuals and Linear Bottlenecks.

In CVPR.
[17] Muhammad Shafique et al. 2021. TinyML: Current Progress, Research Challenges,

and Future Roadmap. In DAC. 1303–1306.
[18] Qingcheng Xiao et al. 2017. Exploring heterogeneous algorithms for accelerating

deep convolutional neural networks on FPGAs. In DAC. 1–6.
[19] Robert David et al. 2021. Tensorflow lite micro: Embedded machine learning for

tinyml systems. MLSys (2021), 800–811.
[20] Rafael Stahl et al. 2023. Fused depthwise tiling for memory optimization in tinyml

deep neural network inference. tinyML Research Symposium (2023).
[21] Saining Xie et al. 2019. Exploring Randomly Wired Neural Networks for Image

Recognition. In ICCV.
[22] Shuzhang Zhong et al. 2023. Memory-aware Scheduling for Complex Wired

Networks with Iterative Graph Optimization. In ICCAD.
[23] Tianqi Chen et al. 2018. {TVM}: An Automated {End-to-End} Optimizing Compiler

for Deep Learning. In OSDI. 578–594.
[24] Xiangzhong Luo et al. 2022. You only search once: on lightweight differentiable

architecture search for resource-constrained embedded platforms. In DAC. 475–
480.

[25] Yanchi Dong et al. 2023. A Model-Specific End-to-End Design Methodology for
Resource-Constrained TinyML Hardware. In DAC. 1–6.

[26] Zihan Wang et al. 2022. Hierarchical memory-constrained operator scheduling
of neural architecture search networks. In DAC. 493–498.

[27] Zhongzhi Yu et al. 2023. NetBooster: Empowering Tiny Deep Learning By
Standing on the Shoulders of Deep Giants. In DAC. 1–6.

[28] Sudeep Pasricha. 2023. Lightning Talk: Efficient Embedded Machine Learning
Deployment on Edge and IoT Devices. In DAC. 1–2.

https://github.com/mit-han-lab/tinyengine/blob/main/assets/mcunetv2_large.tflite

	Abstract
	1 Introduction
	2 Preliminaries
	3 Methods
	3.1 Insights of MoteNN
	3.2 Workflow Overview
	3.3 Axis Connecting Graph (ACG)
	3.4 Handling Overlapped Sliding-window
	3.5 Optimization Algorithm

	4 Evaluation
	4.1 Experiment Setup
	4.2 Peak Memory Usage Evaluation
	4.3 Latency Overhead Evaluation

	5 Conclusion
	Acknowledgments
	References

