
Better 
Pareto Frontier

MoteNN: Memory Optimization via Fine-grained 
Scheduling for Deep Neural Networks on Tiny Devices

1. Motivation 2. Techniques

3. Evaluation

Cloud AI Mobile AI Tiny AI

Memory (Act) 40GB 16GB 512KB

Memory (Wgt) 40GB 16GB /

Storage (Wgt) ~TB/PB 512GB ~MB

1.2. Challenge: Small Memory Capacity 

1.1. The Era of AIoT on Tiny Devices

• Low-power
• Low-cost
• Rapid Growth
•Wide Application

81920x smaller

32768x 
smaller

1.3. Scheduling for Memory Optimization

A

B

D

C

E

F

A

B

D

C

E

F

A
B

C

D
E

F

Time

Peak-mem=4

Time

AB

DC

E
F

Peak-mem=3

1.4. Fine-grained Scheduling can be Better

[1] Ordering Chaos: Memory-
Aware Scheduling of Irregularly 
Wired Neural Networks for Edge 
Devices 

[1]

𝑛 parts

𝐻 ×𝑊 × 𝐶

𝐻 ×𝑊 × 𝐶

𝐻 ×𝑊 × 𝐶

Input

𝐿
Layers

Peak Mem: 2𝐻𝑊𝐶

#MAC: 9𝐿𝐻𝑊𝐶2
Coarse-grained Fine-grained Middle-grained

Block-level 
dependencies

along height axis

Different methods to partition the sub-graph 
along height axis into 𝑛 parts

Sub-graph with 
𝐿 stacked 3x3 

Conv2D

2.5. Handling Overlapped Sliding-Window

spatial axis
reduce axis

h: height w: width
c: channel-0 k: channel-1

Y3

Y2

Y1

X

PW-Conv

DW-Conv

PW-Conv

W1

W2

W3

𝑌1 ℎ,𝑤, 𝑘 = ∑𝑐𝑋 ℎ,𝑤, 𝑐 ∗ 𝑊1[𝑘, 𝑐]

𝑌2 ℎ,𝑤, 𝑘
= ∑𝑟,𝑠𝑌1 ℎ + 𝑟,𝑤 + 𝑠, 𝑘 ∗ 𝑊2[𝑘, 𝑟, 𝑠]

𝑌3 ℎ,𝑤, 𝑐 = ∑𝑘𝑌2 ℎ,𝑤, 𝑘 ∗ 𝑊3[𝑐, 𝑘]

w c

w k

w k

w c

c

r

k

k cX W1

Y1

Y2

Y3

k s W2

c k W3

h

h

h

h

r

s

Some
Connected 

Components

Axis Connecting Graph (ACG)

h

h

h

h

w

w

w

w

k

k

k

k

k

2.3. Axis Connecting Graph (ACG)

2.4. Graph Partitioning with ACG

X1 X2

Subgraph

Y1 Y2

ACG 
Subgraph

X1

X2

Sliced 
Subgraph1

Y1,1 Y1,2

Slice

Sliced 
Subgraph2

Y2,1 Y2,2

Slice

Concat Add

in node

out node

spatial axis

reduce axis

2.2. Workflow Overview

2.1. Basic Insights

• It is inefficient to consider the 
operator partition separately for 
each operator
• We need to consider the 

partition and scheduling of 
operators at graph level. 

• It is important to focus on memory 
bottlenecks for graph partitioning.
• Only partitioning memory 

bottlenecks tensors can optimize 
peak memory. 

2.6. Optimization Algorithm

① Accept an original graph and a latency constraint ratio as input, searching for fine-grained 
graph and schedule to achieve lowest peak memory under the given latency constraint. 

② In each iteration, select the cell that contributes most to peak memory usage and the Axis 
Connecting Graphs containing bottlenecks within the cell. 

③ Generate partition schemes to build new fine-grained graphs and measures the new graphs to 
save best-β ones for next iteration.

④ After several iterations within a time budget, output the fine-grained graph and schedule 
achieving the lowest peak memory under the given latency constraint.

3.1. Experiment Setup

• Device: STM32H7A3ZI-Q MCU (1.4 MB SRAM)
• Baselines: 
• TinyEngine (NIPS’21)
• Patch-based Inference for Simple CNN

• HMCOS (DAC’22)
• Coarse-grained Scheduling for Complex 

DNN
• Workloads:
• Simple CNN: MobileNetV2, MCUNetV2
• Complex CNN: NASNet, DARTS, FPNAS
• Transformer: BERT-Tiny

3.2. Peak Memory Optimization

Latency Overhead 
Constraint: <5%

3.3. E2E Latency Overhead

Workload: MCUNetV2-SE-Large

Renze Chen1, Zijian Ding2, Size Zheng1, Meng Li1, Yun Liang1 1PKU 2UCLA

Device

Analyzer

Optimizer

Profiler &
Simulator

Model

Axis 
Connecting 

Graph (ACG)
Code

Search

Config Latency

Op. Latency 
Cache

• Works like Serenity and HMCOS schedule the operator 
execution order to manage tensor lifetimes to optimize 
peak memory usage of activation. 

• We find that make the graph finer-grained by partitioning 
some operators into smaller ones and schedule the fine-
grained graph can further reduce the memory usage. 


