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*¢ 2.6. Optimization Algorithm

(1) Accept an original graph and a latency constraint ratio as input, searching for fine-grained
graph and schedule to achieve lowest peak memory under the given latency constraint.
(@) In each iteration, select the cell that contributes most to peak memory usage and the Axis

O Memory bottleneck
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(3 Generate partition schemes to build new fine-grained graphs and measures the new graphs to

* We find that make the graph finer-grained by partitioning save best-p ones for next iteration.

some operators into smaller ones and schedule the fine- (4) After several iterations within a time budget, output the fine-grained graph and schedule

grained graph can further reduce the memory usage. achieving the lowest peak memory under the given latency constraint.
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