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Cloud AI Mobile AI Tiny AI

Memory (Act) 40GB 16GB 512KB

Memory (Wgt) 40GB 16GB /

Storage (Wgt) ~TB/PB 512GB ~MB

1.2. Challenge: Small Memory Capacity 

1.1. The Era of AIoT on Tiny Devices

• Low-power
• Low-cost
• Rapid Growth
•Wide Application

81920x smaller

32768x 
smaller

1.3. Scheduling for Memory Optimization
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1.4. Fine-grained Scheduling can be Better

[1] Ordering Chaos: Memory-
Aware Scheduling of Irregularly 
Wired Neural Networks for Edge 
Devices 
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2.5. Handling Overlapped Sliding-Window
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2.3. Axis Connecting Graph (ACG)

2.4. Graph Partitioning with ACG
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2.2. Workflow Overview

2.1. Basic Insights

• It is inefficient to consider the 
operator partition separately for 
each operator
• We need to consider the 

partition and scheduling of 
operators at graph level. 

• It is important to focus on memory 
bottlenecks for graph partitioning.
• Only partitioning memory 

bottlenecks tensors can optimize 
peak memory. 

2.6. Optimization Algorithm

① Accept an original graph and a latency constraint ratio as input, searching for fine-grained 
graph and schedule to achieve lowest peak memory under the given latency constraint. 

② In each iteration, select the cell that contributes most to peak memory usage and the Axis 
Connecting Graphs containing bottlenecks within the cell. 

③ Generate partition schemes to build new fine-grained graphs and measures the new graphs to 
save best-β ones for next iteration.

④ After several iterations within a time budget, output the fine-grained graph and schedule 
achieving the lowest peak memory under the given latency constraint.

3.1. Experiment Setup

• Device: STM32H7A3ZI-Q MCU (1.4 MB SRAM)
• Baselines: 
• TinyEngine (NIPS’21)
• Patch-based Inference for Simple CNN

• HMCOS (DAC’22)
• Coarse-grained Scheduling for Complex 

DNN
• Workloads:
• Simple CNN: MobileNetV2, MCUNetV2
• Complex CNN: NASNet, DARTS, FPNAS
• Transformer: BERT-Tiny

3.2. Peak Memory Optimization

Latency Overhead 
Constraint: <5%

3.3. E2E Latency Overhead

Workload: MCUNetV2-SE-Large
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• Works like Serenity and HMCOS schedule the operator 
execution order to manage tensor lifetimes to optimize 
peak memory usage of activation. 

• We find that make the graph finer-grained by partitioning 
some operators into smaller ones and schedule the fine-
grained graph can further reduce the memory usage. 


