

MoteNN: Memory Optimization via Fine-grained Scheduling for Deep Neural Networks on Tiny Devices

Renze Chen¹, Zijian Ding², Size Zheng¹, Meng Li¹, Yun Liang¹ ¹PKU ²UCLA

※ 1. Motivation

***** <u>1.1. The Era of AloT on Tiny Devices</u>

- Low-power
- Low-cost
- Rapid Growth
- Wide Application

*** 1.2. Challenge: Small Memory Capacity**

	Cloud AI	Mobile Al	Tiny Al
Memory (Act)	40GB	16GB	512KB
Λ (Λ / σ t)	1000	1 C 032768x	

終2. Techniques

*** 2.1.** Basic Insights

- It is inefficient to consider the operator partition separately for each operator
- We need to consider the partition and scheduling of operators at graph level.
- It is important to focus on memory bottlenecks for graph partitioning.
- Only partitioning memory bottlenecks tensors can optimize peak memory.

*** 2.2. Workflow Overview**

*** 2.3. Axis Connecting Graph (ACG)**

*** 1.3. Scheduling for Memory Optimization**

• Works like Serenity and HMCOS schedule the operator execution order to manage tensor lifetimes to optimize peak memory usage of activation.

*** 1.4. Fine-grained Scheduling can be Better**

*** 2.4. Graph Partitioning with ACG** in node spatial axis X_1 reduce axis X₂ out node Slice

*** 2.5. Handling Overlapped Sliding-Window**

nL

*** 2.6. Optimization Algorithm**

#Kernel-Launch

(a) Peak Memory: 768

- (b) Peak Memory: 384
- We find that make the graph finer-grained by partitioning • some operators into smaller ones and schedule the finegrained graph can further reduce the memory usage.
- Accept an original graph and a latency constraint ratio as input, searching for fine-grained graph and schedule to achieve lowest peak memory under the given latency constraint.
- In each iteration, select the cell that contributes most to peak memory usage and the Axis (2)Connecting Graphs containing bottlenecks within the cell.
- Generate partition schemes to build new fine-grained graphs and measures the new graphs to $(\mathbf{3})$ save best- β ones for next iteration.
- After several iterations within a time budget, output the fine-grained graph and schedule $(\mathbf{4})$ achieving the lowest peak memory under the given latency constraint.

終 3. Evaluation

nL