MoteNN: Memory Optimization via Fine-grained
Scheduling for Deep Neural Networks on Tiny Devices
Renze Chent, Zijian Ding?, Size Zheng?!, Meng Li!, Yun Liang! 'PKU ZUCLA

2 1. Motivation & 2. Techniques

>k 1.1. The Era of AloT on Tiny Devices >k 2.1. Basic Insights >k 2.3. Axis Connecting Graph (ACG)

e Low-power 5 o * It is inefficient to consider the h: height | w: width spatial axis
e Low-cost % zg I I operator partition separately for c: channel-0 | k: channel-1 reduce axis
e Rapid Growth 2™ 11 I I I each operator X] (W
* Wide Application 718 e ler TR Ten e * We need to consider the ,L/_L Yilh,w, k] = Y X[h,w,c] W, [k, c]

PP partition and scheduling of PW-Conv (Y,] (W

operators at graph level. '_L/'Z Yolh,w, k|
Hey Siri

OK Google

| | 2
L
. ! “ “u

* It is important to focus on memory DW-Conv ILZZWJL =Y, Nlh+r,w+ s k]« W,k 1 s]
Ya

bottlenecks-fc.Jr graph partitioning. PW-Conv Ya[h,w,c] = SiYo[hw, k] * Wa[c, k|
* Only partitioning memory

bottlenecks tensors can optimize @ Axis Connecting Graph (ACG)
sk : :
£ 1.2. Challenge: Small Memory Capacity peak memory. X [FToTe MW, come = ”
% 2.2. Workflow Overview Y |[hfwlkjc| |[K|r[s|W; connected i il [k] [
Components _L/
Memory (Act) [40GB 16GB| [512KB {Ana,yzerJ (5 € ONNX Y, [kl e 1<] PERR] W, > [[w] [k
Memory (Wgt) 40GB 32768x 7/ Il Model Y; [h|w]c|k hi [w| |k
Search S]
Storage (Wgt) ~TB/P ~MB % @ >k 2.4. Graph Partitioning with ACG
81920x smaller Axis Ifl>{0pt|m|zer $ |c++: in node | | spatial axis
*¢ 1.3. Scheduling for Memory Optimization Connecting Code BN [reduce axis
Graph (ACG) Config Latency i Sliced ' i Sliced !
Peak-mem=4 Peak-mem-=3 { Sliced || oliced |
/{\ | e U EE L U DETE
Op. Latency | | |Profiler & | |3 =)
@ Y 0 Latency 1 profier & subgao () 0) B
%/} Device Soncal
Graph G/ Schedule s* >k 2.5. Handling Overlapped Sliding-Window

[1] Ordering Chaos: Memory-
Aware Scheduling of Irregularly
Wired Neural Networks for Edge \ _ \
Devices Time Time

Sub-graph with Block-level
L stacked 3x3 dependencies
Conv2D along height axis

Different methods to partition the sub-graph
along height axis into n parts

(Input INENNEE it Il Il i
* Works like Serenity and HMCOS schedule the operator e wi - »/ A AN
execution order to manage tensor lifetimes to optimize : I j : 7 vT /7 vl 7 vl
peak memory usage of activation. el V'j 56 %; | |
HxwxC) @ 1 A
> 1.4. Fine-grained Scheduling can be Better EVAC- OLHWCE
' n parts Coarse-grained Fine-grained Middle-grained

Peak Mem: 2HW C

Coarse-grained Fine-grained Middle-grained
_______________________________ Extra #MAC Ratio n(L —1)/H oy ~ 0 D ~ 0 @D
8 x 64 Peak Mem Ratio (A+2/M)H+22L—-1)/2H)& ((1+L/n)H+LL-1))/(2H) & (n+L%)/(2n) ()
Caxes (B #Kernel-Launch nL &) ~min{n(n —1)(2L —1),HL} & nkL ay

8x16

*¢ 2.6. Optimization Algorithm

(1) Accept an original graph and a latency constraint ratio as input, searching for fine-grained
graph and schedule to achieve lowest peak memory under the given latency constraint.
(@) In each iteration, select the cell that contributes most to peak memory usage and the Axis

O Memory bottleneck

(a) Peak Memory: 768 (b) Peak Memory: 384 Connecting Graphs containing bottlenecks within the cell.
(3 Generate partition schemes to build new fine-grained graphs and measures the new graphs to

* We find that make the graph finer-grained by partitioning save best-p ones for next iteration.

some operators into smaller ones and schedule the fine- (4) After several iterations within a time budget, output the fine-grained graph and schedule

grained graph can further reduce the memory usage. achieving the lowest peak memory under the given latency constraint.
~le 3 "
¢z 3. Evaluation
** 3.1. Experiment Setup ¢ 3.2. Peak Memory Optimization ** 3.3. E2E Latency Overhead
* Device: STM32H7A3ZI-Q MCU (1.4 MB SRAM) Peak Memory (100KB) 0 1 2 3 4 5 6 7 8 9 10 11 : _SE-
 Bealiron 356KB. ~.320KB. 519KB) Workload: MCUNetV2-SE-Large

' NASNet-A (CIFAR-10 !
* TinyEngine (NIPS’21) e | F L ! Lzétenctv (?vs:h:;d R 30
 Patch-based Inference for Simple CNN DARTS (CIFAR-10) E =1 ! QNI 297 o2
@
e HMCOS (DACIZZ) NASNet-A (ImageNet) E — | E 20
» Coarse-grained Scheduling for Complex DARTS (ImageNet) E : é_ 15 —a
DNN FPNAS il = - I E 10 ° AretBoe:rirntier

 Workloads: MobileNetV2 = ;) ® 5 .

 Simple CNN: MobileNetV2, MCUNetV2 MCUNetv2? E == : 0 °

. -+ 150 170 190 210 230 250 270 290 310 330
 Complex CNN: NASNet, DARTS, FPNAS BERT-Tiny —— . peak Memory Usage (KB)

* Transformer: BERT-Tin — ' - -
Y B TinyEngine EHMCOS @ MoteNN ~@-TinyEngine ~&—MoteNN (.

HE CHIF’S TO SYSTEMS
EEEEEEEEEE

