
MCUBERT: Memory-Efficient BERT Inference on Commodity
Microcontrollers

Zebin Yang1,2†, Renze Chen3†, Taiqiang Wu4, Ngai Wong4, Yun Liang2,6, Runsheng Wang2,5,6,
Ru Huang2,5,6, Meng Li1,2,6∗

1Institute for Artificial Intelligence, Peking University, Beijing, China
2School of Integrated Circuits, Peking University, Beijing, China
3School of Computer Science, Peking University, Beijing, China

4 The University of Hong Kong, Hong Kong, China
5Institute of Electronic Design Automation, Peking University, Wuxi, China
6Beijing Advanced Innovation Center for Integrated Circuits, Beijing, China

ABSTRACT
In this paper, we propose MCUBERT to enable language models
like BERT on tiny microcontroller units (MCUs) through network
and scheduling co-optimization. We observe the embedding table
contributes to the major storage bottleneck for tiny BERT models.
Hence, at the network level, we propose an MCU-aware two-stage
neural architecture search algorithm based on clustered low-rank
approximation for embedding compression. To reduce the infer-
encememory requirements, we further propose a novel fine-grained
MCU-friendly scheduling strategy. Through careful computation
tiling and re-ordering as well as kernel design, we drastically in-
crease the input sequence lengths supported on MCUs without any
latency or accuracy penalty. MCUBERT reduces the parameter size
of BERT-tiny and BERT-mini by 5.7× and 3.0× and the execution
memory by 3.5× and 4.3×, respectively. MCUBERT also achieves
1.5× latency reduction. For the first time, MCUBERT enables light-
weight BERT models on commodity MCUs and processing more
than 512 tokens with less than 256KB of memory.

KEYWORDS
MCU, BERT, MCU-aware NAS, MCU-friendly Scheduling Optimiza-
tion, Custom Kernel Design

1 INTRODUCTION
IoT devices based on microcontroller units (MCUs) are ubiquitous,
enabling a wide range of speech and language applications on
the edge, including voice assistant [9, 38], real-time translation
[40, 45], smart home [35], etc. Language models (LMs), e.g., BERT
[13], are fundamental to these applications. While cloud off-loading
is heavily employed for LM processing, it suffers from high latency
overhead, privacy concerns, and a heavy reliance onWiFi or cellular

∗Corresponding Author, meng.li@pku.edu.cn
†Equal contribution

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICCAD ’24, October 27–31, 2024, New York, NY, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1077-3/24/10. . . $15.00
https://doi.org/10.1145/3676536.3676747

(a) (b)

(c)

BERT-tiny BERT-mini
0

5

10

#
P
a
ra

m
et

er
s

(M
B

)

Embedding
Transformer Layers

BERT-tiny BERT-mini
0

0.5

1

1.5

P
ea

k
M

em
or

y
(M

B
)

Score Matrix
Q & K Matrix
Input Activation

64 128 192 256 512
0

0.2

0.4

0.6
NUCLEOF767

STM32F746

STM32F205

Sequence Length

P
ea

k
M

em
or

y
(M

B
) MLP

MHA

Figure 1: Enabling BERT on MCUs faces memory challenges:
(a) the Flash storage limits themodel size; (b) the SRAMmem-
ory limits the peak execution memory; (c) for long sequence
lengths, memory requirements of bothMHA andmulti-layer
perceptron (MLP) become bottleneck.

networks [3, 16]. Hence, there is a growing demand for deploying
BERT-like LMs on MCUs.

Though appealing, enabling BERT on MCUs is very challenging.
On one hand, MCUs only have a very simple memory hierarchy
with highly constrainedmemory budgets [3, 5]. For example, a state-
of-the-art (SOTA) ARM Cortex-M7 MCU only has 320 KB static
random-access memory (SRAM) to store intermediate data, e.g.,
activation, and 1 MB Flash to store program and weights, directly
limiting the peak execution memory and the total parameter size of
LMs [3, 5, 23, 24]. As shown in Figure 1, evenwith 8-bit quantization,
the BERT-tiny model [4, 36] exceeds the SRAM and Flash capacity
by more than 2.3× and 4.3×, respectively.

On the other hand, the computation graph of a Transformer
block in BERT is more complex when compared with convolutional
neural networks (CNNs): each multi-head attention (MHA) block
not only comprises moreMCU-unfriendly tensor layout transforma-
tion operators, e.g., reshape, transpose, etc, but also organizes them
with linear operators in a more complex topology. Naively execut-
ing these operators can result in significant memory consumption
and poor performance [5, 18].

Existing works, however, cannot resolve these challenges. Most
SOTA BERT designs [19, 21, 32] and network optimization designs

https://doi.org/10.1145/3676536.3676747

Table 1: Comparison with prior-art methods (Opt represents
Optimization).

Method Platform Model Network Opt Scheduling Opt
MLP MHA Kernel

[3] MCU CNN Conv - - ✗

[23, 24] MCU CNN Conv - - !

[22] MCU ViT MLP ! ✗ !

[32] GPU BERT Linear ✗ ✗ ✗

[11] GPU BERT - ✗ ! !

Ours MCU BERT Embedding ! ! !

[39, 44] focus on large BERT models on GPUs or smartphones.
As the memory and storage of these platforms are much more
abundant than MCUs, these methods usually focus on optimizing
the Transformer layers for better latency. Another class of works
[3, 15, 23, 24] develop MCU-friendly CNNs by jointly optimizing
the network architecture and scheduling, which, however, cannot
be directly applied to BERT.

In this paper, we propose MCUBERT, a network and scheduling
co-optimization framework to enable BERT on commodity MCUs
for the first time. We observe for small BERT models, e.g., BERT-
tiny, the embedding table accounts for the major storage bottleneck
and thus, propose to leverage the MCU-friendly clustered low-rank
approximation for embedding compression. We further propose
an MCU-aware two-stage differentiable neural architecture search
(NAS) algorithm to improve the accuracy of compressed models.
To reduce the execution memory usage and latency, we observe
the execution of a Transformer block can be carefully tiled with-
out accuracy penalty and develop an MCU-friendly fine-grained
scheduling algorithm. Our contributions can be summarized as
follows:

• We propose an MCU-aware two-stage NAS algorithm based
on clustered low-rank approximation for embedding com-
pression to overcome the storage bottleneck.

• To reduce the execution peak memory and latency, we pro-
pose MCU-friendly scheduling optimization for the Trans-
former block.

• MCUBERT can reduce the model size by 5.7× and 3.0× as
well as the peak memory by 3.5× and 4.3× for BERT-tiny and
BERT-mini, respectively, enabling to process more than 512
tokens simultaneously with less than 256KB SRAM. MCU-
BERT also achieves 1.5× and 1.3× latency reduction com-
pared to SOTA inference engines, CMSIS-NN and [5], respec-
tively.

2 RELATEDWORKS
2.1 Model Deployment on MCUs.
There are two main approaches to deploy models on MCUs, inter-
pretation [8, 12] and code generation [5, 23, 24]. The interpretation-
based methods embed an on-device runtime interpreter to sup-
port flexible model deployment but require extra memory to store
meta-information and extra time for runtime interpretation. Code-
generation-based methods directly compile the given model into
target code to save memory and reduce inference latency. MCU-
BERT uses a code generation method that is more specialized for

our target model and device, leading to lower latency and lower
memory usage.

2.2 Network efficiency optimization.
Network efficiency is very important for the overall performance
of deep learning systems and has been widely studied. We focus on
reviewing the model optimizations targeting at MCUs and for LMs.

Deep learningmodels need tomeet the tight storage andmemory
constraints to run on MCUs. Previous works propose network and
scheduling optimization as summarized in Table 1. [3, 24, 31] com-
press CNNs with NAS to meet the storage constraints. [5] deploys
small Transformer models which already satisfy the memory con-
straints of MCUs. [22] deploys vision transformer (ViT) on MCUs
mainly by compressing the MLP layers and searching the token
numbers. However, there are new challenges for deploying BERT
on MCUs. First, compared to tiny CNNs and small Transformer
models, BERT models have more parameters. Second, the mem-
ory bottleneck of BERT inference mainly lies in the MHA block
when sequence length is long, which is shown in Figure 1(c). The
computation of MHA block is more complex compared with CNN
blocks and MLP layers, bringing new challenges for scheduling op-
timization. We propose MCUBERT to first deploy BERT, the most
representative encoder transformer model, on MCUs.

Though no existing works deploy BERT models on MCUs, there
are network optimization algorithms proposed for LMs on other
platforms, e.g., GPUs, such as pruning [6, 10, 34, 41], quantiza-
tion [2, 28, 33, 43], low-rank factorization [1, 7, 17, 21, 25], etc.
As MCUs do not natively support low-bit quantization or sparse
computation, low-rank factorization is usually more MCU-friendly.
Existing works such as Distilled Embedding [25] and Albert [21]
leverage low-rank factorization based on singular value decompo-
sition (SVD) for embedding compression and prune singular values
with small magnitudes. Adaptive embedding [1] compresses the
embedding table with clustered low-rank approximation: it divides
the tokens in an embedding table into clusters first and applies low-
rank approximation with different ratios to each cluster based on
the cluster importance. Adaptive embedding empirically leverages
token frequency as the proxy metric for its importance, which leads
to high accuracy degradation.

There are also scheduling optimization proposed for Transformer
models on GPUs. FlashAttention [11] only computes the attention
score tensor partially each time and repetitively update the accumu-
lation of the partial sum to drastically reduce the execution memory.
There are also previous works like [14, 30, 42] that use kernel fusion
to reduce memory usage and accelerate inference. However, these
methods usually do not consider quantization and targets at both
training and inference. Our scheduling optimization is inspired by
these methods but is more MCU-friendly.

As shown in Table 1, our proposed MCUBERT first deploys
transformer model BERT on MCUs. MCUBERT compresses the em-
bedding table, which account for most of the parameters and can’t
be stored in MCU. Besides MLP block, We also carefully optimize
the MHA block, which comprises more MCU-unfriendly operators
and can also be the memory bottleneck of BERT inference. Com-
pared with GPU-based methods, MCUBERT conduct network and
scheduling optimization in a more MCU-friendly mode.

Table 2: Notations used in the paper.

Notations Meanings
𝑣 Vocabulary size

𝑠, ℎ, 𝑑 Sequence length, # heads, and embedding dimension
𝑐 # clusters

𝑖, 𝑗, 𝑙 Loop variables for clusters, tokens, and singular values
𝑡 Sequence length each tile

𝑈 ,𝑉 Unitary matrices generated by SVD
𝑈𝑖 ,𝑉𝑖 Embedding table and linear projection for the 𝑖𝑡ℎ cluster
𝑈𝑖, 𝑗 Embedding vector for the 𝑗𝑡ℎ token in 𝑖𝑡ℎ cluster
Σ Vector of singular values
𝛼, 𝛽 NAS parameters for embedding compression
𝛼 𝑗,𝑖 NAS parameters for 𝑗𝑡ℎ token in 𝑖𝑡ℎ cluster in first stage NAS
𝛽𝑖,𝑙 NAS parameters for 𝑙𝑡ℎ singular value in 𝑖𝑡ℎ cluster in second stage NAS
𝛽∗
𝑖

Threshold for NAS parameters in 𝑖𝑡ℎ cluster in second stage NAS
𝑀, 𝑁,𝐾 Loop ranges of a matrix multiplication
𝑚,𝑛, 𝑘 Loop variables of a matrix multiplication

3 MCUBERT: MCU-FRIENDLY
NETWORK/SCHEDULING
CO-OPTIMIZATION

3.1 Motivations and Overview
We now discuss our observations on key challenges that prevent
running BERTs directly on MCUs and introduce the overall flow
of MCUBERT. The notations used in the section is summarized in
Table 2.

Observation 1: the tightMCU Flash storage limitsmodel size
and forces to use small BERTmodels, for which the embedding
table becomes the major bottleneck. To satisfy the Flash storage
constraints of MCUs, which is often less than 2 MB [3, 24], we
are forced to consider only small BERT models, e.g., BERT-tiny
and BERT-mini [13], which have lower embedding dimensions and
fewer Transformer layers. However, there still exists a 4.3× gap
between the model size and the MCU Flash, even for BERT-tiny
with 8-bit quantization. As shown in Figure 1(a), the embedding
table contributes to more than 90% of the parameters of BERT-tiny
and becomes the major bottleneck. Hence, embedding compression
is required to enable BERT on MCUs.

Observation 2: the MCU SRAM size limits the execution
peak memory of both MHA and MLP, especially for long se-
quence lengths. During BERT inference, all the activations need
to be stored in the MCU SRAM. Although Flash paging and re-
materialization has been proposed [27] to reduce the SRAM re-
quirements, the introduced Flash access and re-computation incur
high power and latency overhead. As shown in Figure 1(c), with the
increase of the sequence length, the peak memory of both MHA and
MLP increases significantly and quickly exceed the MCU SRAM
limit. Depending on the sequence length, both MLP and MHA can
be the memory bottleneck. Meanwhile, as shown in Figure 1(b),
for a long input sequence, the score matrix in MHA incurs highest
memory consumption. Therefore, both MLP and MHA, especially
the score matrix, needs to be optimized to enable processing long
sequences.

Observation 3: the naive design of computation kernels in-
troduces non-negligible latency overhead. Both MHA and MLP

Pre-trained model

NAS for
Token Clustering

NAS for low-rank
approximation ratio

MLP Scheduling

Deployment on
MCU

MHA Scheduling

Kernel Design

Figure 2:MCUBERToverview. (Params stands for parameters,
Acc stands for MNLI accuracy, and OOM stands for out of
memory.)

involve many linear/batched matrix multiplication operators with
large shapes. MHA further complicates the inference with extensive
tensor shape transformation operators, e.g., reshape, transpose, etc.
Naive kernel implementation, e.g., CMSIS-NN, cannot well utilize
the hardware resource and suffers from over 30% latency overhead.
To improve the resource utilization, it is important to leverage the
memory locality and the instruction-level parallelism (ILP) of MCU.
Memory access patterns can also be designed to fuse the tensor
shape transformation operators with the linear operators. All of
these require dedicated kernel optimization.

MCUBERT overview. Based on these observations, we propose
MCUBERT, an MCU-friendly network/scheduling co-optimization
framework to enable BERT models on tiny devices. The overview of
MCUBERT is shown in Figure 2. MCUBERT leveragesMCU-friendly
clustered low-rank approximation for embedding compression and
features a MCU-aware two-stage NAS to explore the trade-off be-
tween accuracy and model sizes, enabling to reduce the model size
and fit BERT models into the MCU Flash storage. To enable process-
ing long sequences, MCUBERT proposes MCU-friendly scheduling
optimization. By tiling and re-ordering the computation as well as
designing efficient kernels, inference peak memory and latency can
be reduced without accuracy penalty. Such optimization enables to
support more than 512 tokens on a small MCU with less than 256
KB SRAM.

Note while we focus on optimizing BERT-like encoder LMs for
MCUs, our proposed techniques, including embedding compression
and scheduling optimization, can benefit GPT-like decoder LMs
[29] on MCUs as well. Decoder LMs face more challenges on the
storage and dynamic shape induced by the KV cache, which we
leave for future research.

3.2 MCU-aware NAS for Embedding
Compression

MCU-aware NAS Formulation. To reduce the parameter size
and satisfy the tight Flash storage constraint, we propose embed-
ding compression based on clustered low-rank approximation fol-
lowing [1], which is more MCU-friendly as MCUs do not natively
support sub-8-bit quantization or sparse computation. Following

<latexit sha1_base64="W6ODttSr8+U7bQX/41yuJ7olUzM=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgKGFXfB0DXjwmYB6QhDA76U3GzM4uM7NCWPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dfiy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUy6caBZdYN9wIbMUKaegLbPqju6nffEKleSQfzDjGbkgHkgecUWOl2lmvWHLL7gxkmXgZKUGGaq/41elHLAlRGiao1m3PjU03pcpwJnBS6CQaY8pGdIBtSyUNUXfT2aETcmKVPgkiZUsaMlN/T6Q01Hoc+rYzpGaoF72p+J/XTkxw2025jBODks0XBYkgJiLTr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfHmZNC7K3nX5qnZZqpxnceThCI7hFDy4gQrcQxXqwADhGV7hzXl0Xpx352PemnOymUP4A+fzB24njKM=</latexit>

+ Token

<latexit sha1_base64="//2bWayQfIm/ayxtlfDZ/XzMXZU=">AAACA3icbVDLSsNAFL3xWesr6k43g0VwUUoivpYFNy4r2Ac0IUwm03bo5MHMRCgh4MZfceNCEbf+hDv/xmmahbYeuHA45965c4+fcCaVZX0bS8srq2vrlY3q5tb2zq65t9+RcSoIbZOYx6LnY0k5i2hbMcVpLxEUhz6nXX98M/W7D1RIFkf3apJQN8TDiA0YwUpLnnnoFG9kggZ55mCejLCXsTqy8twza1bDKoAWiV2SGpRoeeaXE8QkDWmkCMdS9m0rUW6GhWKE07zqpJImmIzxkPY1jXBIpZsV+3N0opUADWKhK1KoUH9PZDiUchL6ujPEaiTnvan4n9dP1eDazViUpIpGZLZokHKkYjQNBAVMUKL4RBNMBNN/RWSEBSZKx1bVIdjzJy+SzlnDvmxc3J3XmvUyjgocwTGcgg1X0IRbaEEbCDzCM7zCm/FkvBjvxsesdckoZw7gD4zPH1jtl+c=</latexit>↵i,0

<latexit sha1_base64="ive5LUMzaEeMlLnVXtrWkpFSNPM=">AAACA3icbVDLSsNAFL3xWesr6k43g0VwUUoivpYFNy4r2Ac0IUwm03bo5MHMRCgh4MZfceNCEbf+hDv/xmmahbYeuHA45965c4+fcCaVZX0bS8srq2vrlY3q5tb2zq65t9+RcSoIbZOYx6LnY0k5i2hbMcVpLxEUhz6nXX98M/W7D1RIFkf3apJQN8TDiA0YwUpLnnnoFG9kggZ55mCejLCXsTqy89wza1bDKoAWiV2SGpRoeeaXE8QkDWmkCMdS9m0rUW6GhWKE07zqpJImmIzxkPY1jXBIpZsV+3N0opUADWKhK1KoUH9PZDiUchL6ujPEaiTnvan4n9dP1eDazViUpIpGZLZokHKkYjQNBAVMUKL4RBNMBNN/RWSEBSZKx1bVIdjzJy+SzlnDvmxc3J3XmvUyjgocwTGcgg1X0IRbaEEbCDzCM7zCm/FkvBjvxsesdckoZw7gD4zPH1pzl+g=</latexit>↵i,1

<latexit sha1_base64="12ILVweM9KzfBABfhKYHAJgoWxw=">AAACBHicbVDNS8MwHE3n15xfVY+7BMfAg4xW/DoORPA4wX3AWkqaZltYmpYkFUbpwYv/ihcPinj1j/Dmf2Pa9aCbDwKP9/L75eX5MaNSWda3UVlZXVvfqG7WtrZ3dvfM/YOejBKBSRdHLBIDH0nCKCddRRUjg1gQFPqM9P3pde73H4iQNOL3ahYTN0RjTkcUI6Ulz6w7xY5UkCBLnRCpiQjTm9DPPCvzzIbVsgrAZWKXpAFKdDzzywkinISEK8yQlEPbipWbIqEoZiSrOYkkMcJTNCZDTTkKiXTTIkAGm1oJ4CgS+nAFC/X3RIpCKWc6GWzmMeWil4v/ecNEja7clPI4UYTj+UOjhEEVwbwRGFBBsGIzTRAWVGeFeIIEwkr3VtMl2ItfXia905Z90Tq/O2u0T8o6qqAOjsAxsMElaINb0AFdgMEjeAav4M14Ml6Md+NjfrVilDOH4A+Mzx/iHZjT</latexit>

Emb0

<latexit sha1_base64="S6yVwbi0yP3pVcBpJM8/fpaI5ao=">AAACBHicbVDNS8MwHE3n15xfVY+7BMfAg4xW/DoORPA4wX3AWkqaZltYmpYkFUbpwYv/ihcPinj1j/Dmf2Pa9aCbDwKP9/L75eX5MaNSWda3UVlZXVvfqG7WtrZ3dvfM/YOejBKBSRdHLBIDH0nCKCddRRUjg1gQFPqM9P3pde73H4iQNOL3ahYTN0RjTkcUI6Ulz6w7xY5UkCBLnRCpiQjTm9DPPDvzzIbVsgrAZWKXpAFKdDzzywkinISEK8yQlEPbipWbIqEoZiSrOYkkMcJTNCZDTTkKiXTTIkAGm1oJ4CgS+nAFC/X3RIpCKWc6GWzmMeWil4v/ecNEja7clPI4UYTj+UOjhEEVwbwRGFBBsGIzTRAWVGeFeIIEwkr3VtMl2ItfXia905Z90Tq/O2u0T8o6qqAOjsAxsMElaINb0AFdgMEjeAav4M14Ml6Md+NjfrVilDOH4A+Mzx/jopjU</latexit>

Emb1

 <latexit sha1_base64="OPaGYvMGxZ4JEAbZogZLlQKz7Ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgQcKu+DoGvHiMYB6QLGF2MpuMmZ1ZZnqFsOQfvHhQxKv/482/cZLsQRMLGoqqbrq7wkRwg5737RRWVtfWN4qbpa3tnd298v5B06hUU9agSijdDolhgkvWQI6CtRPNSBwK1gpHt1O/9cS04Uo+4DhhQUwGkkecErRSs4s8ZqZXrnhVbwZ3mfg5qUCOeq/81e0rmsZMIhXEmI7vJRhkRCOngk1K3dSwhNARGbCOpZLYJUE2u3binlil70ZK25LoztTfExmJjRnHoe2MCQ7NojcV//M6KUY3QcZlkiKTdL4oSoWLyp2+7va5ZhTF2BJCNbe3unRINKFoAyrZEPzFl5dJ87zqX1Uv7y8qtbM8jiIcwTGcgg/XUIM7qEMDKDzCM7zCm6OcF+fd+Zi3Fpx85hD+wPn8AbLNjyg=</latexit>⇥

<latexit sha1_base64="2fpfFgQhhpYUEkhwmsJcSOTs01U=">AAACF3icbVDJSgNBEO2JW4xb1KOXxiB4CGFG3I4BLx4jmgUyIfR0KkmTnoXuGiEM8xde/BUvHhTxqjf/xs4kgiY+KHi8V9Vd9bxICo22/WXllpZXVtfy64WNza3tneLuXkOHseJQ56EMVctjGqQIoI4CJbQiBcz3JDS90dXEb96D0iIM7nAcQcdng0D0BWdopG6x4mZvJJ6MIU1cD5B1E6dMZUpd3guRurdi4P9oabdYsit2BrpInBkpkRlq3eKn2wt57EOAXDKt244dYSdhCgWXkBbcWEPE+IgNoG1owHzQnSTbKaVHRunRfqhMBUgz9fdEwnytx75nOn2GQz3vTcT/vHaM/ctOIoIoRgj49KN+LCmGdBIS7QkFHOXYEMaVMLtSPmSKcTRRFkwIzvzJi6RxUnHOK2c3p6VqeRZHnhyQQ3JMHHJBquSa1EidcPJAnsgLebUerWfrzXqftuas2cw++QPr4xuwdp+J</latexit>

�1,l · ⌃1,l

<latexit sha1_base64="00A0C2p05VTSO5SESqNMFHdmj04=">AAACCHicbVA7T8MwGHR4lvIKMDIQUSExoCpBvMZKLIxFog+pCZHjOq1VPyLbQaqijCz8FRYGEGLlJ7Dxb3DTDNBykqXT3ffZ54sSSpR23W9rYXFpeWW1slZd39jc2rZ3dttKpBLhFhJUyG4EFaaE45YmmuJuIjFkEcWdaHQ98TsPWCoi+J0eJzhgcMBJTBDURgrtA7+4I4toivPMZ1APJcvaeejd+1okeWjX3LpbwJknXklqoEQztL/8vkApw1wjCpXqeW6igwxKTRDFedVPFU4gGsEB7hnKIcMqyIoQuXNklL4TC2kO106h/t7IIFNqzCIzOUmqZr2J+J/XS3V8FWSEJ6nGHE0filPqaOFMWnH6RGKk6dgQiCQxWR00hBIibbqrmhK82S/Pk/Zp3buon9+e1RonZR0VsA8OwTHwwCVogBvQBC2AwCN4Bq/gzXqyXqx362M6umCVO3vgD6zPH0jlmrg=</latexit>

V>
1

<latexit sha1_base64="5qRRWI1yFYWvbsl7BuQ+LhLV8SI=">AAACA3icbVDNS8MwHE3n15xfVW96KQ7Bg4xW/DoOvHicYLfBWkqapVtYkpYkFUYpePFf8eJBEa/+E978b0y7HnTzQeDx3u8rL0wokcq2v43a0vLK6lp9vbGxubW9Y+7udWWcCoRdFNNY9EMoMSUcu4ooivuJwJCFFPfCyU3h9x6wkCTm92qaYJ/BEScRQVBpKTAPvHJGFtIU55nHoBoLlrl54OSB2bRbdglrkTgVaYIKncD88oYxShnmClEo5cCxE+VnUCiCKM4bXipxAtEEjvBAUw4Zln5W7s+tY60MrSgW+nFllervjgwyKacs1JXFkXLeK8T/vEGqoms/IzxJFeZotihKqaViqwjEGhKBkaJTTSASRN9qoTEUECkdW0OH4Mx/eZF0z1rOZevi7rzZPq3iqINDcAROgAOuQBvcgg5wAQKP4Bm8gjfjyXgx3o2PWWnNqHr2wR8Ynz83o5h4</latexit>

U1

<latexit sha1_base64="OkhISYK0PezbuSfFITubWh88zdo=">AAAB9XicbVDLSsNAFL3xWeur6tJNsAgupCTia1lw47KCfUAby2Ry2w6dTMLMRCkh/+HGhSJu/Rd3/o3TNAttPXDhcM69c+ceP+ZMacf5tpaWV1bX1ksb5c2t7Z3dyt5+S0WJpNikEY9kxycKORPY1Exz7MQSSehzbPvjm6nffkSpWCTu9SRGLyRDwQaMEm2kh17+QioxyFKW9StVp+bksBeJW5AqFGj0K1+9IKJJiEJTTpTquk6svZRIzSjHrNxLFMaEjskQu4YKEqLy0nxnZh8bJbAHkTQltJ2rvydSEio1CX3TGRI9UvPeVPzP6yZ6cO2lTMSJRkFniwYJt3VkTyOwAyaRaj4xhFDJzF9tOiKSUG2CKpsQ3PmTF0nrrOZe1i7uzqv10yKOEhzCEZyAC1dQh1toQBMoSHiGV3iznqwX6936mLUuWcXMAfyB9fkDYriTCQ==</latexit>

i

<latexit sha1_base64="PBaqja+VFLUzo6BmNrCZnUabeSI=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8SNgVX8eAF48JmAckS5id7U3GzM4uM7NCCPkCLx4U8eonefNvnCR70MSChqKqm+6uIBVcG9f9dlZW19Y3Ngtbxe2d3b390sFhUyeZYthgiUhUO6AaBZfYMNwIbKcKaRwIbAXDu6nfekKleSIfzChFP6Z9ySPOqLFSPeyVym7FnYEsEy8nZchR65W+umHCshilYYJq3fHc1PhjqgxnAifFbqYxpWxI+9ixVNIYtT+eHTohp1YJSZQoW9KQmfp7YkxjrUdxYDtjagZ60ZuK/3mdzES3/pjLNDMo2XxRlAliEjL9moRcITNiZAllittbCRtQRZmx2RRtCN7iy8ukeVHxritX9cty9TyPowDHcAJn4MENVOEeatAABgjP8ApvzqPz4rw7H/PWFSefOYI/cD5/AMSLjNw=</latexit>

d

<latexit sha1_base64="PBaqja+VFLUzo6BmNrCZnUabeSI=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8SNgVX8eAF48JmAckS5id7U3GzM4uM7NCCPkCLx4U8eonefNvnCR70MSChqKqm+6uIBVcG9f9dlZW19Y3Ngtbxe2d3b390sFhUyeZYthgiUhUO6AaBZfYMNwIbKcKaRwIbAXDu6nfekKleSIfzChFP6Z9ySPOqLFSPeyVym7FnYEsEy8nZchR65W+umHCshilYYJq3fHc1PhjqgxnAifFbqYxpWxI+9ixVNIYtT+eHTohp1YJSZQoW9KQmfp7YkxjrUdxYDtjagZ60ZuK/3mdzES3/pjLNDMo2XxRlAliEjL9moRcITNiZAllittbCRtQRZmx2RRtCN7iy8ukeVHxritX9cty9TyPowDHcAJn4MENVOEeatAABgjP8ApvzqPz4rw7H/PWFSefOYI/cD5/AMSLjNw=</latexit>

d

Searchable
Embedding

Transformer

Transformer

Full
Embedding

Transformer

Transformer

Compressed
Embedding

Transformer

Transformer

Min Mean
Square Error

Min KL
Divergence

Embedding Search Space

KD-Guided MCU-Aware NAS KD-Guided Finetune
Full

Embedding

Transformer

Transformer

Min Mean
Square Error

Min KL
Divergence

Figure 3: Our proposed NAS search formulation for embed-
ding compression.

[1], we set the number of clusters to 4 and show its impact in abla-
tion study. Two important questions remain to be answered: 1) how
to cluster the tokens and 2) how to determine the approximation
ratio for each cluster. We propose differentiable NAS to guide the
compression directly with task loss.

Let 𝑐 denote the number of clusters and Emb𝑖 denote the em-
bedding table for 𝑖-th cluster, where 0 ≤ 𝑖 ≤ 𝑐 − 1. To enable NAS
for token clustering, as shown in Figure 3, we introduce trainable
architecture parameters 𝛼 (0 ≤ 𝛼 ≤ 1) for each token in the vocab-
ulary. Let 𝑣 denote the vocabulary size. Then, for the 𝑗-th token
(0 ≤ 𝑗 ≤ 𝑣 − 1), we define {𝛼 𝑗,0, . . . , 𝛼 𝑗,𝑐−1}, where

∑𝑐−1
𝑖=0 𝛼 𝑗,𝑖 = 1.

Then, the embedding for the 𝑗-th token becomes:

𝛼 𝑗,0Emb0 [𝑗] +
𝑐−1∑︁
𝑖=1

𝛼 𝑗,𝑖Emb𝑖 [𝑗], (1)

where Emb𝑖 [𝑗] denotes the embedding vector of 𝑗-th token from
the 𝑖-th embedding table.

To leverage NAS for low-rank approximation, instead of directly
searching the reduced dimension for each embedding table, we
apply singular value decomposition (SVD) and search the singular
values that can be pruned, which enables to better inherit the pre-
trained weights and is crucial for BERT compression. Specifically,
we first decompose Emb𝑖 with SVD as 𝑈𝑖Diag(Σ𝑖)𝑉⊤

𝑖
, where 𝑈𝑖

and 𝑉𝑖 are unitary matrices, Σ𝑖 is the vector of singular values, and
Diag(Σ𝑖) represents the diagonal matrix with singular values in
Σ𝑖 filled in the diagonal. We also introduce architecture parame-
ters 𝛽 (0 ≤ 𝛽 ≤ 1) for each cluster. For the 𝑖-th cluster, we define
{𝛽𝑖,0, . . . , 𝛽𝑖,𝑑−1}, where 𝑑 is the embedding dimension, to indicate
the importance of each singular value. Then, we have

Emb𝑖 = 𝑈𝑖Diag(𝛽𝑖,0Σ𝑖,0, . . . , 𝛽𝑖,𝑑−1Σ𝑖,𝑑−1)𝑉⊤
𝑖 . (2)

Based on 𝛼 and 𝛽 , the embedding size for the 𝑖-th cluster can be
approximated as

Size(Emb𝑖) =
∑︁
𝑙

𝛽𝑖,𝑙 (𝑑 +
∑︁
𝑗

𝛼 𝑗,𝑖), (3)

where
∑

𝑗 𝛼 𝑗,𝑖 approximates the number of tokens for 𝑖-th cluster.∑
𝑙 𝛽𝑖,𝑙

∑
𝑗 𝛼 𝑗,𝑖 and

∑
𝑙 𝛽𝑖,𝑙𝑑 represent the size of low-rank approx-

imated 𝑈𝑖 and 𝑉⊤
𝑖
, respectively. We introduce ℓ1-penalty of the

embedding table size into the objective function to encourage a
lower parameter size:

min
𝛼,𝛽

min
𝑤

ℓ𝑤,𝛼,𝛽 + 𝜆
∑︁
𝑖

Size(Emb𝑖) . (4)

where𝑤 denotes the model parameters and 𝜆 is the hyperparameter
to balance model size and accuracy. 𝛼 , 𝛽 , and𝑤 are trained together.
Upon convergence, for the 𝑗-th token, we determine its cluster by
argmax𝑖𝛼 𝑗,𝑖 , while for the 𝑖-th cluster, we set a threshold 𝛽∗

𝑖
and

only keep the 𝑙-th singular values with 𝛽𝑖,𝑙 > 𝛽∗
𝑖
.

Improving NAS Convergence. In practice, we find that search-
ing token clustering and low-rank approximation ratio, i.e., 𝛼 and 𝛽 ,
simultaneously makes the differentiable NAS training unstable and
directly degrades the accuracy of the searched models. As shown
in Figure 7, the accuracy of the searched models is even lower com-
pared to the baseline adaptive embedding [1]. We hypothesize this
is because of the large discrepancy of optimal low-rank approxima-
tion ratios for different clusters. Because the token clustering keeps
changing during NAS, some singular values in a certain cluster
may be incorrectly preserved due to tokens that eventually belong
to a different cluster. These incorrectly preserved singular values
in turn may impact the token clustering, leading to sub-optimal
results.

To encourage the NAS convergence, we decompose the search
space and propose a two-stage NAS strategy: in the first stage, we
fix different low-rank approximation ratios for each cluster, and
only search the token clustering, i.e., 𝛼 . The approximation ratios
are chosen following [1]. Then, in the second stage, given the fixed
token clustering, we search the best approximation ratio for each
cluster, i.e., 𝛽 . While we can iterate back to the first stage with
updated approximation ratios, we empirically find it is not neces-
sary. We hypothesize this is because the token clustering reflects
the token importance, which should remain stable for different
low-rank approximation ratios. The algorithm details are shown in
Algorithm 1, 2, and 3. We guide the NAS with knowledge distilla-
tion (KD) to improve convergence following [32]. We simply use
the trained full model as the teacher.

Our proposed two-stage NAS incurs low training cost as only a
few training epochs (less than 2) are needed for each stage. After
the two-stage NAS, we quantize both the weights and activations
to 8 bits and fine-tune the compressed model with KD to get the
final deployable model.

3.3 MCU-friendly Scheduling Optimization
We now introduce our MCU-friendly scheduling optimization to
reduce the inference memory and latency. We optimize the sched-
uling of both MHA and MLP since and also optimize the kernel
implementation for MHA for better efficiency.

Algorithm 1 Searching for Token Clustering
Input: Embedding matrix 𝐸𝑚𝑏, vocabulary size 𝑣 , # clusters 𝑐 ,

embedding dimension 𝑑 , division value 𝑑𝑖𝑣 , # training epochs
𝑒𝑝𝑜𝑐ℎ𝑠

Output: Clustering results 𝑐𝑙𝑠
1: 𝛼 𝑗,𝑖 =

1
𝑐 ∀𝑗, 𝑖

2: 𝑈0 = 𝐸𝑚𝑏
⊲ The embedding table of first cluster is not factorized

3: for 𝑖 = 1, . . . , 𝑐 − 1 do
4: 𝑈𝑖 ,𝑉

𝑇
𝑖

= LowRankFactorization(𝐸𝑚𝑏, 𝑑
𝑑𝑖𝑣𝑖

)
⊲ Factorize the embedding table of other clusters except
the first cluster

5: end for
6: Define the embedding of 𝑗-th token: 𝛼 𝑗,0𝑈0, 𝑗 +

∑𝑐−1
𝑖=1 𝛼 𝑗,𝑖𝑈𝑖, 𝑗𝑉

𝑇
𝑖

⊲ 𝑉0 is excluded as the embedding table of the first cluster is
not factorized

7: for 𝑧 = 0, . . . , 𝑒𝑝𝑜𝑐ℎ𝑠 − 1 do
8: Fix 𝛼 and update weights𝑤 by descending ∇𝑤ℓ (𝑤, 𝛼)
9: Fix𝑤 and update architecture parameters 𝛼 by descending

∇𝛼 (ℓ (𝑤, 𝛼) + 𝜆
∑
𝑖 Size(𝐸𝑚𝑏𝑖))

10: end for
11: 𝑐𝑙𝑠 [𝑗] = argmax𝑖 (𝛼 𝑗,𝑖) ∀𝑗
12: return 𝑐𝑙𝑠

Algorithm 2 LowRankFactorization
Input: Matrix to be factorized𝑀𝑎𝑡𝑟𝑖𝑥 ; Factorization ratio 𝑟
Output: Factorization Results𝑈 and 𝑉𝑇

1: 𝑈 ,Diag(Σ),𝑉𝑇 = SVD(𝑀𝑎𝑡𝑟𝑖𝑥)
⊲ Diag(Σ) denotes the diagonal matrix filled with vector Σ

2: Σ = Σ[0 : 𝑟]
3: 𝑈 = 𝑈 [:, 0 : 𝑟] Diag(Σ1/2)
4: 𝑉𝑇 = Diag(Σ1/2) 𝑉𝑇 [0 : 𝑟, :]
5: return𝑈 ,𝑉𝑇

Figure 4: MLP scheduling to reduce peakmemory. The tensor
in yellow will be saved in SRAM at memory bottleneck.

MLP Scheduling. The memory bottleneck of MLP comes from
the second linear layer. As shown in Figure 4(a), 3 tensors need to be
stored, whose sizes add up to 6 ·𝑠 ·𝑑 . We observe the computation of
different tokens in an MLP is independent. This enables us to divide
the input activation into tiles along the token dimension. Assume
each tile has 𝑡 tokens. Then, we can re-order the computation to
finish all the MLP computations for one tile before moving to the
next tile. Moreover, we can also perform an in-place addition with

Algorithm 3 Searching for Low-Rank Approximation Ratio
Input: Embedding matrix 𝐸𝑚𝑏, vocabulary size 𝑣 , # clusters 𝑐 ,

embedding dimension 𝑑 , # training epochs 𝑒𝑝𝑜𝑐ℎ𝑠 , importance
threshold 𝛽∗, searched token clustering 𝑐𝑙𝑠

Output: Low-rank approximation ratios 𝑟𝑎𝑡𝑖𝑜𝑠
1: 𝛽𝑖,𝑙 = 𝛽

∗
𝑖

∀𝑖, 𝑙
2: Divide the 𝐸𝑚𝑏 into 𝑐 parts 𝐸𝑚𝑏0, . . . , 𝐸𝑚𝑏𝑐−1 according to

token clustering 𝑐𝑙𝑠
3: 𝑈0 = 𝐸𝑚𝑏0

⊲ The embedding table of first cluster is not factorized
4: for 𝑖 = 1, . . . , 𝑐 − 1 do
5: 𝑈𝑖 ,Diag(Σ𝑖,0, . . . , Σ𝑖,𝑑−1),𝑉𝑇

𝑖
= SVD(𝐸𝑚𝑏𝑖)

⊲ Factorize the embedding table of other clusters except the
first cluster

6: end for
7: Define embedding of 𝑗-th token in 𝑖-th cluster (for 𝑖 ≥ 1):
𝑈𝑖, 𝑗 · Diag(𝛽𝑖,0Σ𝑖,0, . . . , 𝛽𝑖,𝑑−1Σ𝑖,𝑑−1)𝑉𝑇

𝑖
8: For the first cluster, the embedding of 𝑗-th token is𝑈0, 𝑗
9: for 𝑧 = 0, . . . , 𝑒𝑝𝑜𝑐ℎ𝑠 − 1 do
10: Fix 𝛽 and update weights𝑤 by descending ∇𝑤ℓ (𝑤, 𝛽)
11: Fix𝑤 and update architecture parameters 𝛽 by descending

∇𝛽 (ℓ (𝑤, 𝛽) + 𝜆
∑
𝑖 Size(𝐸𝑚𝑏𝑖))

12: end for
13: Initialize 𝑟𝑎𝑡𝑖𝑜𝑠 [𝑖] = 0 ∀𝑖
14: for 𝑖 = 1, . . . , 𝑐 − 1 do
15: for 𝑙 = 0, . . . , 𝑑 − 1 do
16: 𝑟𝑎𝑡𝑖𝑜𝑠 [𝑖]+ = 1 if 𝛽𝑖,𝑙 > 𝛽∗

𝑖
⊲ Only save singular values whose importance is larger
than threshold

17: end for
18: end for
19: return 𝑟𝑎𝑡𝑖𝑜𝑠

the residual and directly overwrite the 𝑡 input tokens as shown
in Figure 4(b). Thereby, we can reduce the execution memory to
𝑠 ·𝑑+𝑡 ·5𝑑 . As 𝑡 is usually much smaller than 𝑠 , 6×memory reduction
can be achieved. In practice, by analytically computing the relation
between 𝑡 and the peak memory usage, we can directly choose 𝑡
based on the MCU SRAM size. Hence, such scheduling optimization
incurs negligible latency overhead on commodity MCUs.

MHA Scheduling. Unlike MLP, the computation of different
tokens depends on each other, making it hard to fully tile the MHA
computation. We observe the following optimization opportunities:
1) the computation of each head is independent, and 2) the score
tensor accounts for the major bottleneck, shown in Figure 1, and
its computation can be tiled along token dimension.

Based on the observation, we propose a new MHA scheduling in
Figure 5(b). We first tile the computation along the head dimension,
i.e., ℎ, and then, further tile the query tensor along the token di-
mension. This indicates we compute the attention between 𝑡 tokens
and all the 𝑠 tokens per head each time. It enables us to reduce the
memory of the score matrix, breaking the quadratic increase of
execution memory into a linear increase with 𝑠 . Again, we carefully
choose 𝑡 considering both memory constraints and computation
parallelism to minimize latency overhead.

Figure 5: MHA scheduling to reduce the tensor transforma-
tion latency and peak memory.

Our proposed MHA scheduling shares similarities with FlashAt-
tention [11], which tiles the key and valuematrix. However, FlashAt-
tention requires updating the output matrix repetitively. Either the
output matrix has to be stored in high precision, leading to a higher
peak execution memory, or quantization and de-quantization oper-
ations are needed during each output accumulation step, bringing
heavy computation pressure and accuracy loss. Our method is more
MCU-friendly and will not face such issues.

Kernel Design Optimization. The scheduling optimization
reduces the peak memory for MLP and MHA. To reduce latency,
we also design optimized kernels for each tile of computation.

First, we apply a two-level loop blocking to better fit into the
Register-SRAM hierarchy of MCU. Figure 6 illustrates the kernel
design for each tile of the matrix multiplication/linear operator.
The innermost block is referred to as a micro-kernel, which com-
putes entirely on registers. Properly setting its shape helps exploit
register-level locality, thus reducing inference latency. In our ex-
periments, we set the micro-kernel shape to [M, N, K] = [4, 2, 4]. In
comparison, CMSIS-NN [20] employs a shape of [1, 2, 4], which ex-
hibits lower locality and decreases performance. Second, we unroll
the reduction loop with a factor of 64 to harness the ILP of MCU
and better utilize the hardware instruction pipeline. Moreover, by
designing the memory access patterns for the linear operators, we
fuse all the tensor shape transformation operators and avoid ded-
icated memory accesses. The kernel design optimization enables
to fully leverage the hardware characteristics of MCUs for more
efficient BERT processing.

4 EXPERIMENTS
4.1 Experiment Setup

Dataset. We search and evaluate our models on the General Lan-
guage Understanding Evaluation (GLUE) benchmark [37], which

M0 = 4, N0 = 2, K0 = 64;
FOR(m1, M / M0) FOR(n1, N / N0) {

reg_c[M0][N0], reg_a[M0][4], reg_b[N0][4];
FOR(k1, K / K0) UR_FOR(k0, K0 / 4) {

UR_FOR(m0, M0) LDx4(®_a[m0], ...);
UR_FOR(n0, N0) LDx4(®_b[n0], ...);
UR_FOR(m0, M0) UR_FOR(n0, N0)
reg_c[m0][n0] += DOTx4(reg_a[m0], reg_b[n0]); } }

Exploit RLL Exploit ILP

Micro-Kernel
with shape

[M, N, K] = [4, 2, 4]

Reduction Loop Unrolling

ILP: Instruction Level Parallelism
RLL: Register Level Locality

Figure 6: Matrix multiplication kernel design of MCUBERT.
UR_FOR means fully unrolled for-loop. LDx4 means loading
4 consecutive elements from SRAM to the register. DOTx4
means computing dot-product of two 4-element vectors using
SIMD instruction (e.g., SMLAD for ARM Cortex-M MCU). The
quantization and writing-back operations are omitted here.

Table 3: Accuracy comparison on MNLI. The ratio of the first
cluster is not shown as it equals to embedding dimension
(Emb stands for embedding, params stands for parameters,
and Acc stands for accuracy).

Model Clustering Cutoffs Ratios Emb Total Acc (%)Params (M) Params (M)
BERT-tiny - - 3.907M 4.300M 70.01%
FWSVD - - 0.368M 0.761M 60.83%

Adaptive Emb 1000,4000,10000 32,8,2 0.318M 0.712M 67.01%

MCUBERT-tiny 510,1065, 1915 109, 18, 2 0.231M 0.624M 68.33%
1218, 2534, 4061 54, 2, 2 0.307M 0.700M 69.18%

BERT-mini - - 7.814M 10.960M 74.80%
Adaptive Emb 1000,4000,10000 64, 16, 4 0.648M 3.794M 69.25%

MCUBERT-mini
1014, 3348, 4912 41, 41, 2 0.492M 3.638M 71.89%
1354, 4301, 6094 41, 42, 2 0.613M 3.759M 72.59%
1871, 5591, 7788 52, 18, 2 0.779M 3.925M 74.22%

is a collection of text classification tasks. For most evaluations
and comparisons, we leverage the Multi-Genre Natural Language
Inference Corpus (MNLI) dataset, which is the largest dataset in
GLUE.

Searching setting. We select lightweight BERT models, i.e.,
BERT-tiny and BERT-mini for our experiments, and the pre-trained
models are adopted from [4, 36]. For NAS, we use AdamWoptimizer
with a zero weight decay. We use a batch size of 32 for training and
set the learning rate to 5 × 10−5.

Model deployment. We deploy our model on different MCUs,
i.e., NUCLEO-F746 with 320KB SRAM and 1MB Flash, NUCLEO-
F767 with 512KB SRAM and 2MB Flash as well as NUCLEO-H7A3ZI-
Q with 1.4 MB SRAM and 2MB Flash, to measure the latency and
the peak memory usage. The batch size is fixed to 1.

4.2 Importance of two-stage NAS
As described in Section 3, we propose a two-stage NAS strategy,
searching token clustering in the first stage and approximation
ratios in the second stage. To demonstrate the importance of such
two-stage formulation, we compareMCUBERTwith other baselines
based on BERT-tiny and MNLI dataset, as shown in Figure 7, includ-
ing 1) baseline adaptive embedding; 2) one-stage NAS that searches
the token clustering and approximation ratios together (DARTS

0.5 0.6 0.7 0.8
66

67

68

69

70

71

Parameters (M)

T
o
p
-1

A
cc
u
ra
cy

(%
)

Adaptive Embedding
One-Stage NAS
Ratio-then-Clustering NAS
Clustering-Only NAS
Ours
2-iteration NAS

Figure 7: Importance of two-stage NAS.

Table 4: Accuracy comparison on other GLUE datasets (Emb
stands for embedding, and params stands for parameters).

Model Metrics MRPC SST2 QQP

BERT-tiny Emb Params 3.91M 3.91M 3.91M
Accuracy 74.02% 82.45% 87.16%

Adaptive Emb Emb Params 0.32M 0.32M 0.32M
Accuracy 70.34% 81.42% 84.32%

MCUBERT-tiny Emb Params 0.31M 0.26M 0.32M
Accuracy 73.77% 82.11% 85.20%

Model Metrics MRPC SST2 QQP

BERT-mini Emb Params 7.81M 7.81M 7.81M
Accuracy 78.90% 85.32% 89.25%

Adaptive Emb Emb Params 0.65M 0.65M 0.65M
Accuracy 75.49% 83.60% 87.93%

MCUBERT-mini Emb Params 0.65M 0.49M 0.52M
Accuracy 77.94% 83.83% 88.12%

[26]); 3) searching approximation ratios first followed by token clus-
tering (denoted as Ratio-then-Clustering NAS); 4) clustering-only
NAS that only searches the token clustering; and 5) 2-round NAS
that repeats the two-stage NAS for 2 rounds. As shown in Figure 7,
our two-stage NAS outperforms all the other strategies and achieves
the best Pareto front. One-stage NAS that ideally has the largest
search space produces the worst Pareto front. This is because of the
large discrepancy among optimal low-rank approximation ratios
for different token clustering, which brings convergence difficulties
as discussed in Section 3.

4.3 Accuracy Comparison on GLUE
Comparison on MNLI.. We compare MCUBERT with the base-

line FWSVD [17] and adaptive embedding [1] on the MNLI dataset,
as shown in Table 3. For both BERT-tiny and BERT-mini, MCU-
BERT can simultaneously achieve better accuracy and smaller pa-
rameter size compared to the baseline FWSVD and adaptive em-
bedding. Specifically, for BERT-tiny, MCUBERT can achieve 1.4×
and 1.6× embedding parameter reduction with 1.3% and 7.5% better

accuracy compared to adaptive embedding and FWSVD, respec-
tively. With the same model size, MCUBERT improves the accuracy
by 2.2% and 8.4%. For BERT-mini, MCUBERT achieves 3.3% better
accuracy with a smaller parameter size compared to adaptive em-
bedding. We also observe for BERT-tiny, MCUBERT tries to assign
a higher approximation ratio for the second cluster but assign more
tokens to the fourth cluster.

Comparison on Other Datasets. We then compare MCUBERT
with adaptive embedding on other GLUE datasets. Note we focus
on the MRPC, SST2, and QQP datasets as even the full BERT-tiny
and BERT-mini suffers from accuracy issues on COLA and RTE
datasets [13]. As shown in Table 4, MCUBERT consistently out-
performs adaptive embedding on all three tasks by 3.43%, 0.69%,
0.88% better accuracy for BERT-tiny, respectively. For different
datasets, the number of tokens and the approximation ratio of each
cluster are different, indicating the necessity of task loss-guided
compression.

4.4 Peak Memory and Latency Comparison
Peak memory comparison. We compare the inference latency

and peakmemorywith the baseline CMSIS-NN [20], [5], and FlashAt-
tention [11]. We re-implement [5] and [11] based on the original
paper. When re-implement FlashAttention, we need to store the out-
put matrix in high precision, which has been discussed in Section
3.3. As shown in Figure 8, both CMSIS-NN and [5] do not consider
the execution memory in the scheduling, leading to a fast mem-
ory growth and out-of-memory issue for a long sequence length,
i.e., 512. For BERT-tiny, MCUBERT achieves more than 1.9× and
3.5× peak memory reduction compared to the baseline when the
sequence lengths are 64 and 512, respectively. This indicates MCU-
BERT can support 3×, 2×, and 2× longer input sequences compared
to CMSIS-NN and [5] on MCUs with 512 KB, 320 KB and 128 KB
SRAM, respectively. In FlashAttention, the output matrix needs
iterative updates, demanding fp32 data format instead of int8 preci-
sion, causing substantial memory usage growth. Moreover, typical
FlashAttention implementation keeps the entire query, key, and
value matrices in memory, further increasing memory consump-
tion compared to our approach. Compared with FlashAttention,
MCUBERT also achieves more than 1.6× and 1.9× peak memory
reduction in all sequence lengths for BERT-tiny and BERT-mini,
respectively.

Latency comparison. The latency comparison for different
sequence lengths is shown in Table 5. MCUBERT achieves around
1.5× and 1.3× latency reduction compared to CMSIS-NN and [5]
consistently for different sequence lengths and different MCUs.
We visualize the latency breakdown for [5] and MCUBERT. As
shown in Figure 10, MCUBERT reduces the latency of both the lin-
ear and matrix multiplication operators and fuses all tensor shape
transformation operators, demonstrating the high efficiency of our
kernel design. Compared with other acceleration strategies such as
FlashAttention, MCUBERT still achieves lower latency, although
MCUBERT already shows lower peak memory usage than FlashAt-
tention. With the model and scheduling optimization, MCUBERT en-
ables to deploy BERT-tiny on NUCLEO-F746 with sequence length of
512 for the first time.

64 128 196 256 512
0

200

400

600

800

1,000

NUCLEOF767

STM32F746

STM32F205

Sequence Length

P
ea
k
M
em

or
y
(K

B
)

CMSIS-NN

(Burrello et al., 2021)
FlashAttention
MCUBERT

(a)

64 128 192 256 512
0

500

1,000

1,500

NUCLEOF767

STM32F746

STM32F205

Sequence Length

P
ea
k
M
em

or
y
(K

B
)

CMSIS-NN

(Burrello et al., 2021)
FlashAttention
MCUBERT

(b)

Figure 8: Peak memory comparison for different sequence lengths for (a)
BERT-tiny and (b) BERT-mini.

1 2 4 8 32 128

3,000

3,200

3,400

3,600

3,800

Latency & Memory

Sweet Region

Tile Size t

L
at
en
cy

(m
s)

200

250

300

350

400

450

P
ea
k
M
em

or
y
(K

B
)

Latency
Peak Memory

Figure 9: Comparison of latency andmem-
ory with different tile sizes 𝑡 .

(a) (b)

Figure 10: Latency (ms) breakdown for (a) MCUBERT and
(b) [5] with 512 sequence length (Matmul stands for matrix
multiplication.).

Table 5: Latency (ms) comparison on NUCLEO-F767 (F7) and
NUCLEO-H7A3ZI-Q (H7) for different sequence lengths us-
ing BERT-tiny (OOM stands for out of memory).

MCU Methods 64 128 192 256 512

F7

CMSIS-NN 386 838 1355 1939 OOM
[5] 366 780 1263 1812 OOM

FlashAttention 273 606 880 1463 4012
MCUBERT 264 578 942 1354 3591

H7

CMSIS-NN 320 697 1138 1638 4233
[5] 284 625 1016 1471 3866

FlashAttention 220 491 818 1205 3297
MCUBERT 213 469 768 1116 2940

4.5 Ablation Study
Impact of the number of clusters. MCUBERT follows adaptive

embedding and empirically fix the number of clusters to 4. We now
evaluate its impact on the accuracy-parameter Pareto front. We use
the BERT-tiny model and MNLI dataset for comparison. As shown
in Figure 11, the Pareto front for 𝑐 = 4 indeed outperforms that
for 𝑐 = 3 or 𝑐 = 5. We observe 𝑐 = 3 performs much worse when
the model parameter size is small. We hypothesize this is because
when 𝑐 = 3, important tokens are forced to have a small dimension,
leading to low accuracy.

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
67

68

69

70

Parameters (M)

T
op

-1
A
cc
u
ra
cy

(%
)

3 Clusters
4 Clusters
5 Clusters

Figure 11: Impact of the number of clusters.

Impact of fine-grained scheduling. To evaluate the impact of
fine-grained scheduling on both latency and memory, we change
the number of tokens in each tile, i.e., 𝑡 . The change in latency
and peak memory is plotted in Figure 9. As we can observe, the
peak execution memory reduces consistently with the decrease of
𝑡 while the latency remains roughly the same for 𝑡 ≤ 2. The high
latency for 𝑡 = 1 is because of hardware under-utilization.

5 CONCLUSION
Thiswork proposesMCUBERT, a network/scheduling co-optimization
framework enabling BERT on MCUs. For network optimization,
MCUBERT proposes an MCU-aware two-stage NAS algorithm with
clustered low-rank approximation for embedding compression. For
scheduling optimization, we leverage tiling, in-place computation,
and kernel optimization to simultaneously reduce peak memory
and latency. MCUBERT overcomes all existing baselines and en-
ables to run the lightweight BERT models on commodity MCUs for
the first time.

ACKNOWLEDGMENTS
This work was supported in part by the NSFC (62125401), the 111
Project (B18001), the Theme-Based Research Scheme (TRS) Project
T45-701/22-R and General Research Fund (GRF) Project 17203224
of the Research Grants Council (RGC), HKSAR.

REFERENCES
[1] Alexei Baevski and Michael Auli. 2018. Adaptive input representations for neural

language modeling. arXiv preprint arXiv:1809.10853 (2018).
[2] Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing Jin, Xin Jiang, Qun Liu, Michael

Lyu, and Irwin King. 2020. Binarybert: Pushing the limit of bert quantization.
arXiv preprint arXiv:2012.15701 (2020).

[3] Colby Banbury, Chuteng Zhou, Igor Fedorov, Ramon Matas, Urmish Thakker,
Dibakar Gope, Vijay Janapa Reddi, MatthewMattina, and Paul Whatmough. 2021.
Micronets: Neural network architectures for deploying tinyml applications on
commodity microcontrollers. Proceedings of Machine Learning and Systems 3
(2021), 517–532.

[4] Prajjwal Bhargava, Aleksandr Drozd, and Anna Rogers. 2021. Generalization in
NLI: Ways (Not) To Go Beyond Simple Heuristics. arXiv:2110.01518 [cs.CL]

[5] Alessio Burrello, Moritz Scherer, Marcello Zanghieri, Francesco Conti, and Luca
Benini. 2021. A microcontroller is all you need: Enabling transformer execution
on low-power iot endnodes. In 2021 IEEE International Conference on Omni-Layer
Intelligent Systems (COINS). IEEE, 1–6.

[6] Daniel Campos, Alexandre Marques, Tuan Nguyen, Mark Kurtz, and ChengXiang
Zhai. 2022. Sparse* bert: Sparse models are robust. arXiv preprint arXiv:2205.12452
(2022).

[7] Patrick Chen, Si Si, Yang Li, Ciprian Chelba, and Cho-Jui Hsieh. 2018. Groupre-
duce: Block-wise low-rank approximation for neural language model shrinking.
Advances in Neural Information Processing Systems 31 (2018).

[8] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018. {TVM}:
An automated {End-to-End} optimizing compiler for deep learning. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).
578–594.

[9] Yu-An Chung, Yu Zhang, Wei Han, Chung-Cheng Chiu, James Qin, Ruoming
Pang, and Yonghui Wu. 2021. W2v-bert: Combining contrastive learning and
masked language modeling for self-supervised speech pre-training. In 2021 IEEE
Automatic Speech Recognition and Understanding Workshop (ASRU). IEEE, 244–
250.

[10] Baiyun Cui, Yingming Li, Ming Chen, and Zhongfei Zhang. 2019. Fine-tune BERT
with sparse self-attention mechanism. In Proceedings of the 2019 conference on
empirical methods in natural language processing and the 9th international joint
conference on natural language processing (EMNLP-IJCNLP). 3548–3553.

[11] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022. Flashat-
tention: Fast and memory-efficient exact attention with io-awareness. Advances
in Neural Information Processing Systems 35 (2022), 16344–16359.

[12] Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Jeffries, Jian Li,
Nick Kreeger, Ian Nappier, Meghna Natraj, Tiezhen Wang, et al. 2021. Tensorflow
litemicro: Embeddedmachine learning for tinyml systems. Proceedings ofMachine
Learning and Systems 3 (2021), 800–811.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[14] Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou. 2021. Turbotransformers:
an efficient gpu serving system for transformer models. In Proceedings of the 26th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
389–402.

[15] Igor Fedorov, Ryan P Adams, Matthew Mattina, and Paul Whatmough. 2019.
Sparse: Sparse architecture search for cnns on resource-constrained microcon-
trollers. Advances in Neural Information Processing Systems 32 (2019).

[16] Igor Fedorov, Ramon Matas, Hokchhay Tann, Chuteng Zhou, Matthew Mattina,
and Paul Whatmough. 2022. UDC: Unified DNAS for Compressible TinyML
Models for Neural Processing Units. Advances in Neural Information Processing
Systems 35 (2022), 18456–18471.

[17] Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia
Jin. 2022. Language model compression with weighted low-rank factorization.
arXiv preprint arXiv:2207.00112 (2022).

[18] Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang Li, and Torsten Hoefler.
2021. Data movement is all you need: A case study on optimizing transformers.
Proceedings of Machine Learning and Systems 3 (2021), 711–732.

[19] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, FangWang,
and Qun Liu. 2019. Tinybert: Distilling bert for natural language understanding.
arXiv preprint arXiv:1909.10351 (2019).

[20] Liangzhen Lai, Naveen Suda, and Vikas Chandra. 2018. Cmsis-nn: Efficient neural
network kernels for arm cortex-m cpus. arXiv preprint arXiv:1801.06601 (2018).

[21] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. 2019. Albert: A lite bert for self-supervised learning
of language representations. arXiv preprint arXiv:1909.11942 (2019).

[22] Yinan Liang, Ziwei Wang, Xiuwei Xu, Yansong Tang, Zhou Jie, and Jiwen Lu.
2023. MCUFormer: Deploying Vision Tranformers on Microcontrollers with
Limited Memory. arXiv preprint arXiv:2310.16898 (2023).

[23] Ji Lin, Wei-Ming Chen, Han Cai, Chuang Gan, and Song Han. 2021. Mcunetv2:
Memory-efficient patch-based inference for tiny deep learning. arXiv preprint

arXiv:2110.15352 (2021).
[24] Ji Lin, Wei-Ming Chen, Yujun Lin, Chuang Gan, Song Han, et al. 2020. Mcunet:

Tiny deep learning on iot devices. Advances in Neural Information Processing
Systems 33 (2020), 11711–11722.

[25] Vasileios Lioutas, Ahmad Rashid, Krtin Kumar, Md Akmal Haidar, and Mehdi
Rezagholizadeh. 2019. Distilled embedding: non-linear embedding factorization
using knowledge distillation. (2019).

[26] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055 (2018).

[27] Shishir G Patil, Paras Jain, Prabal Dutta, Ion Stoica, and Joseph Gonzalez. 2022.
Poet: Training neural networks on tiny devices with integrated rematerialization
and paging. In International Conference onMachine Learning. PMLR, 17573–17583.

[28] Haotong Qin, Yifu Ding, Mingyuan Zhang, Qinghua Yan, Aishan Liu, Qingqing
Dang, Ziwei Liu, and Xianglong Liu. 2022. Bibert: Accurate fully binarized bert.
arXiv preprint arXiv:2203.06390 (2022).

[29] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. OpenAI blog
1, 8 (2019), 9.

[30] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. 2020. Deep-
speed: System optimizations enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 3505–3506.

[31] Manuele Rusci, Alessandro Capotondi, and Luca Benini. 2020. Memory-driven
mixed low precision quantization for enabling deep network inference on micro-
controllers. Proceedings of Machine Learning and Systems 2 (2020), 326–335.

[32] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108 (2019).

[33] Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami,
Michael W Mahoney, and Kurt Keutzer. 2020. Q-bert: Hessian based ultra low
precision quantization of bert. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 34. 8815–8821.

[34] Han Shi, Jiahui Gao, Xiaozhe Ren, Hang Xu, Xiaodan Liang, Zhenguo Li, and
James Tin-Yau Kwok. 2021. Sparsebert: Rethinking the importance analysis in
self-attention. In International Conference on Machine Learning. PMLR, 9547–
9557.

[35] Joonbo Shin, Yoonhyung Lee, and Kyomin Jung. 2019. Effective sentence scoring
method using BERT for speech recognition. In Asian Conference on Machine
Learning. PMLR, 1081–1093.

[36] Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Well-
Read Students Learn Better: The Impact of Student Initialization on Knowledge
Distillation. CoRR abs/1908.08962 (2019). arXiv:1908.08962 http://arxiv.org/abs/
1908.08962

[37] AlexWang, Amanpreet Singh, JulianMichael, Felix Hill, Omer Levy, and Samuel R
Bowman. 2018. GLUE: A multi-task benchmark and analysis platform for natural
language understanding. arXiv preprint arXiv:1804.07461 (2018).

[38] Hu Xu, Bing Liu, Lei Shu, and Philip S Yu. 2019. BERT post-training for review
reading comprehension and aspect-based sentiment analysis. arXiv preprint
arXiv:1904.02232 (2019).

[39] Jin Xu, Xu Tan, Renqian Luo, Kaitao Song, Jian Li, Tao Qin, and Tie-Yan Liu.
2021. NAS-BERT: task-agnostic and adaptive-size BERT compression with neu-
ral architecture search. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining. 1933–1943.

[40] Jiacheng Yang, Mingxuan Wang, Hao Zhou, Chengqi Zhao, Weinan Zhang, Yong
Yu, and Lei Li. 2020. Towards making the most of bert in neural machine trans-
lation. In Proceedings of the AAAI conference on artificial intelligence, Vol. 34.
9378–9385.

[41] Ofir Zafrir, Ariel Larey, Guy Boudoukh, Haihao Shen, and Moshe Wasserblat.
2021. Prune once for all: Sparse pre-trained language models. arXiv preprint
arXiv:2111.05754 (2021).

[42] Yujia Zhai, Chengquan Jiang, Leyuan Wang, Xiaoying Jia, Shang Zhang, Zizhong
Chen, Xin Liu, and Yibo Zhu. 2023. ByteTransformer: A high-performance
transformer boosted for variable-length inputs. In 2023 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 344–355.

[43] Wei Zhang, Lu Hou, Yichun Yin, Lifeng Shang, Xiao Chen, Xin Jiang, and Qun
Liu. 2020. Ternarybert: Distillation-aware ultra-low bit bert. arXiv preprint
arXiv:2009.12812 (2020).

[44] Xiaofan Zhang, Zongwei Zhou, Deming Chen, and Yu Emma Wang. 2022. Au-
toDistill: An end-to-end framework to explore and distill hardware-efficient
language models. arXiv preprint arXiv:2201.08539 (2022).

[45] Jinhua Zhu, Yingce Xia, Lijun Wu, Di He, Tao Qin, Wengang Zhou, Houqiang Li,
and Tie-Yan Liu. 2020. Incorporating bert into neural machine translation. arXiv
preprint arXiv:2002.06823 (2020).

https://arxiv.org/abs/2110.01518
https://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962

	Abstract
	1 Introduction
	2 Related Works
	2.1 Model Deployment on MCUs.
	2.2 Network efficiency optimization.

	3 MCUBERT: MCU-friendly Network/Scheduling Co-Optimization
	3.1 Motivations and Overview
	3.2 MCU-aware NAS for Embedding Compression
	3.3 MCU-friendly Scheduling Optimization

	4 Experiments
	4.1 Experiment Setup
	4.2 Importance of two-stage NAS
	4.3 Accuracy Comparison on GLUE
	4.4 Peak Memory and Latency Comparison
	4.5 Ablation Study

	5 Conclusion
	Acknowledgments
	References

