Check for
Updates

MAGIS: Memory Optimization via Coordinated Graph
Transformation and Scheduling for DNN

Renze Chen Zijian Ding’ Size Zheng
crz@pku.edu.cn bradyd@cs.ucla.edu zhengsz@pku.edu.cn
Peking University University of California, Los Angeles Peking University
China United States China
Chengrui Zhang Jingwen Leng Xuanzhe Liu
zhangchr@stu.pku.edu.cn leng-jw@cs.sjtu.edu.cn xzl@pku.edu.cn
Peking University Shanghai Jiao Tong University Peking University
China China China
Yun Liang’
ericlyun@pku.edu.cn
Peking University
China

Abstract

Recently, memory consumption of Deep Neural Network
(DNN) rapidly increases, mainly due to long lifetimes and
large shapes of tensors. Graph scheduling has emerged as
an effective memory optimization technique, which deter-
mines the optimal execution, re-computation, swap-out, and
swap-in timings for each operator/tensor. However, it often
hurts performance significantly and can only manipulate
tensors’ lifetimes but not shapes, limiting the optimization
space. We find that graph transformation, which can change
the tensor shapes and graph structure, creates a new trade-
off space between memory and performance. Nevertheless,
graph transformation are applied separately so far, with pri-
mary focus on optimizing performance and not memory.
In this paper, we propose MAGIS, a DNN memory op-
timization framework that coordinates graph transforma-
tion with graph scheduling. MAGIS uses a hierarchical tree
to represent Fission Transformation (F-Trans), a type of
transformation which can effectively reduce tensor shapes
in a sub-graph. To keep the complexity low, we build a
light-weight search space based on graph structure analysis.
MAGIS decomposes graph scheduling into graph transforma-
tion and re-ordering and designs an incremental scheduling

“Work done while the author was a student at Peking University.
fCorresponding author.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

ASPLOS °24, April 27-May 1, 2024, La Jolla, CA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0386-7/24/04.
https://doi.org/10.1145/3620666.3651330

607

algorithm to alleviate the scheduling overhead after each
graph transformation step to efficiently coordinate them.
Experimental results show that compared to state-of-the-
art works, MAGIS only uses 15%~85% of their peak mem-
ory usage with the same latency' constraint and obtains a
better Pareto boundary in dual-objective optimization of
memory and performance. Our code is now available at
https://github.com/pku-liang/MAGIS.

ACM Reference Format:
Renze Chen, Zijian Ding, Size Zheng, Chengrui Zhang, Jingwen

Leng, Xuanzhe Liu, and Yun Liang. 2024. MAGIS: Memory Optimization

via Coordinated Graph Transformation and Scheduling for DNN.
In 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3 (ASPLOS
'24), April 27-May 1, 2024, La Jolla, CA, USA. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3620666.3651330

1 Introduction

As deep neural networks (DNNs) become more complex in
terms of topology and size, the memory consumption of
DNNs keeps growing, which poses great challenges for both
training and inference. The memory consumption turns out
to be more important when larger models come to stage [7,
12, 51]. The memory consumption increase can be attributed
to two main factors. First, there are numerous tensors with
long lifetimes, such as model parameters [7, 12, 15, 40, 51],
activations during the training’s forward pass [5, 10, 38, 42],
and intermediate tensors in complex networks [44, 73, 75].
Second, many tensors have large shapes, including large
batch sizes for efficient training/inference, long sequence
lengths in language models [7, 12, 51], and high resolutions
in image-related models [21, 40, 45].

!In this paper, the terms "performance" and "latency” are interchangeably
used, both referring to the time taken by a DNN to complete one infer-
ence/training epoch.

https://doi.org/10.1145/3620666.3651330
https://github.com/pku-liang/MAGIS
https://doi.org/10.1145/3620666.3651330
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3620666.3651330&domain=pdf&date_stamp=2024-04-27

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Optimizing memory usage for DNNs becomes crucial for
both server and mobile computing devices. GPUs, for in-
stance, NVIDIA GeForce RTX 3090, provide only tens to
dozens of GB of memory, while the large-batch training or
inference sometimes requires several tens or even hundreds
of GB of memory. Memory optimization is beneficial for ex-
ecuting large DNN, enabling co-location of multiple tasks in
memory [32], and reducing cross-card communications in
distributed learning. Similarly, mobile CPUs such as Qual-
comm Snapdragon 888 provide only a few tens of GB of
memory and many background applications may reside in
memory, which greatly limits the space for DNN. Memory
optimization is beneficial for deploying DNNs on mobile
devices without consuming too much background memory.

Graph scheduling is a class of widely used memory op-
timization techniques for DNNs, mainly including remate-
rialization [5, 10, 17, 18, 24, 27-29, 37, 38, 47], swapping [5,
20, 22, 30, 37-39, 41, 42, 57], and re-ordering [3, 22, 58, 72].
Its core idea is to manipulate the lifetimes of tensors by
scheduling when each operator/tensor computes, evicts, re-
computes, offloads, and reloads, thereby reducing the peak
amount of tensors simultaneously residing in memory. How-
ever, because of the overhead introduced by re-computation
or data transfer, it frequently leads to a notable reduction in
performance. Moreover, although it operates the lifetimes of
tensors, it does not affect the tensor shapes, which limits its
potential optimization space.

On the other hand, graph transformation is a class of opti-
mization techniques based on equivalent transformations of
graphs. Existing works have achieved good results in opti-
mizing DNN performance [25, 26, 54, 56, 62]. They employ
rule-based sub-graph substitution technique, which can be
roughly divided into two types: Aggregation Transforma-
tion (A-Trans), like Figure 1 (a), which enhances hardware
utilization to improve performance by aggregating small op-
erators into larger ones at the cost of temporally increased
memory usage; Interim Transformation (I-Trans), such as
Figure 1 (b), which generally exploits algebraic equivalence
to provide opportunities for other graph transformations.
In addition, we find that the dual of A-Trans, which we call
Fission Transformation (F-Trans), like Figure 1 (c), can
effectively reduce memory at the cost of lower hardware uti-
lization by splitting some large operators into smaller ones
and executing only one of the split parts at a time.

However, graph transformation for memory optimization
poses two main challenges. (1) Complexity introduced
by F-Trans. On one hand, F-Trans leads to rapid growth
in the size of the graph (as shown in Figure 1 (c), where
the number of nodes almost doubles after transformation),
which hinders subsequent optimization; on the other hand,
F-Trans itself has a vast search space, as it can be applied
to almost every sub-graph. (2) Correlated graph trans-
formation and graph scheduling. Graph transformation
involves a trade-off between memory and performance (e.g.,

608

Renze Chen et al.

(2ea)
=

ENIESES B NES W)

E - (-
1 1

(o) (Famme) =

r>
0D 0D GO W) ()
(a) Aggregation Trans.

output
Node

(c) Fission Trans.

(b) Interim Trans.

Figure 1. Examples of graph transformations. (a) and (b)
are transformations borrowed from TASO [25], which are
used to optimize performance. (c) is the dual of Aggregation
Trans. and can effectively trade memory with performance.

A-Trans trades memory for performance, and F-Trans does
the opposite), but the final memory usage and performance
are also traded by graph scheduling. This necessitates the
need for efficient coordinated optimization between graph
transformation and scheduling, which is challenging since
both of them are complicated optimization.

To tackle these challenges, we propose MAGIS, a DNN
memory optimization framework through coordinated graph
transformations and scheduling. To address the complexity
problem of F-Trans, we propose Fission Hierarchy Tree (F-
Tree) to express the graph structure after F-Trans, without
actually transforming the graph into a complex structure. Al-
though such design somehow limits the search space, it keeps
the complexity low, making it easier for subsequent transfor-
mation and scheduling to search for better solutions. We then
propose analytic methods to select proper sub-graphs and
dimensions for F-Trans to construct a light-weight F-Tree,
effectively reducing the search space of F-Trans.

To address the second challenge, our goal is to allevi-
ate the complexity of graph scheduling after each graph
transformation step. We firstly decompose re-materialization
and swapping into graph transformations and re-ordering,
where re-materialization and swapping are two important
scheduling techniques which can trade memory with per-
formance, while re-ordering is a scheduling method that
optimize memory without hurting performance. Such de-
composition moves the memory & performance trade-off
completely to the transformation phase, and the schedul-
ing phase can only focus on memory optimization through
re-ordering. It makes the scheduling after each graph trans-
formation step much simpler, and fuses the memory & per-
formance trade-offs into the unified search space of graph
transformation. Then, we design an incremental graph sched-
uling algorithm that efficiently obtains a new schedule based
on the previous schedule and the current transformation,
further reducing scheduling time.

Our contributions can be summarized as follows:

e We design and implement MAGIS, a memory optimiza-
tion framework based on coordinated graph transfor-
mation and graph scheduling.

MAGIS: Memory Optimization via Coordinated Graph Transformation and Scheduling for DNN

e We formalize graph fission transformation, represent
it based on hierarchy tree, and use graph analysis to
reduce its search space.

e We propose transformations and algorithms that ef-
ficiently coordinate graph transformation and graph
scheduling for memory optimization.

We compare MAGIS with state-of-the-art graph scheduling-
based memory optimization frameworks on various DNNs.
Experimental results demonstrate that MAGIS can optimize
original peak memory usage to 15%~50% with no more than
10% latency overheads. Compared to state-of-the-art meth-
ods, MAGIS can optimize peak memory to only 15%~85% of
theirs with the same latency constraint, and can achieve a
1.25% speedup over them under the same memory constraint,
obtaining a better Pareto boundary in dual-objective opti-
mization of memory and latency. Our code is now available
at https://github.com/pku-liang/MAGIS.

2 Background & Motivation

Table 1. Notations

Notation ‘ Description/Definition
V(G), E(G) operators, dependencies of G
D(G), T(G) dimension graph, dominator tree of G

cost(G), cost(v)
size(v) or |o|
G.pre(v), G.suc(v)
G.anc(v), G.des(v)
inps(G), outs(G)
G.sub(S) or G[S]
G.inps(S)
G.outs(S)

execution latency of G and v € V(G)
output tensor size of operator v
predecessors, successors of v € V(G)
ancestors, descendants of v € V(G)

inputs, outputs of G

sub-graph of G induced from S € V(G)
nodes consumed by S € V(G) from outside
nodes produced by S € V(G) for outside

2.1 Computation Graph

Graph Structure. DNN during training or inference process
is often represented as "computation graph" G (abbreviated
as "graph"). V.= V(G) is the set of operators, each of which
has several input tensors and one output tensor, and E =
E(G) € V x V is the set of data dependencies between
operators. (v1,v;) € E means that the output tensor of v,
is one of the input tensors of v,. Related notations used in
this paper are shown in Table 1. In cases where there is no
ambiguity, we use xxx(v) as an abbreviation for G.xxx(v).
Some notations can be derived from other notations, for
example, G.inps(S) = (Uyes G-pre(v))\S,and G.outs(S) =
(outs(G) U Upev(g)\s G-pre(v)) N'S. A node u dominates
node v if every path from the entry node to v must go through
u; and then u is v’s dominator. The intermediate dominator
of a node v is the dominator of v that is dominated by all the
dominators of v except v itself. The dominator tree [4] is the
tree where each node’s parent is its intermediate dominator
in the graph. A computation graph usually has many input
nodes (e.g., input tensor, label tensor, and weight tensors), so

609

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

the dominator tree we use here usually takes the input tensor
as the entry. Note that for T = 7(G), T itself is also a graph,
and the operations in Table 1 are also applicable to it. For
example, the set of child nodes of a node v in T is T.suc(v).
The nodes of T also belong to G, i.e., V(7 (G)) € V(G).

Execution Latency. In single machine situation (e.g.,
single-card GPU), the operators in the graph are generally
executed in order, and the order s = (vy, vs, ..., v,) must sat-
isfy the data dependencies between operators. The graph
execution latency can be estimated as the sum of the latency
of the operators: cost(G) = X ey (g) cost(v).

Memory Usage. Given a topo-order s = (vy,0y, ..., 0p),
assuming that i is the timestamp when the i*" operator is
finished, we can calculate the lifetime of the output tensor
of each operator v;: the start timestamp is S; = i — 1, and the
free timestamp is F; = maXy, esuc(v;) J- Based on the lifetime
of each tensor, the set of tensors that are active during the
execution of v; is A; = {v; | S; < i < F;}. Then the active
memory usage during v;’s execution is M; = 3¢ 4, |ul, and
the peak memory usage during the execution of graph G
is: Mpeak = max; M;. We define memory hot-spots as the
set of tensors that contribute to the peak memory usage, that
is, the tensors that are active when peak memory usage is
reached: H = [J{A; | i € {1,2,..,n} A M; = Mpear }-

2.2 Graph Scheduling and Transformation

Graph scheduling is a class of widely used DNN memory
optimization techniques, which manipulates the lifetimes
of tensors to schedule when to execute (re-ordering [3, 58]),
evict & re-compute (re-materialization [5, 10, 18, 24, 27, 37,
38]), and offload & reload (swapping [5, 20, 22, 37, 38, 41, 42,
57]) each operator/tensor without influencing tensor shapes.

Graph transformation is a class of techniques to optimize
computation graphs by mutating their structures while pre-
serving semantics. Existing works [25, 26, 56, 62] mainly op-
timize latency via rule-based sub-graph substitution, which
can be categorized into two types: Aggregation Transfor-
mation (A-Trans), aggregating small operators into larger
ones to trade memory for latency; Interim Transformation
(I-Trans), mostly based on algebraic equivalence to provide
opportunities for other transformations.

2.3 Motivation

We find that appropriate graph transformations can also im-
prove the memory usage of graphs. For example, as shown in
Figure 2 (c), splitting operators reduces peak memory usage
at the cost of more operator calls and decreased hardware
utilization. With the help of graph transformation, memory
optimization of DNNs can be greatly enhanced. For example,
in Figure 2 (a), there’s a simplified graph structure commonly
observed in DNN training or some DNNs with long skip-
connections [23, 44, 73, 75]. It has a peak memory usage of
1056 since 33 tensors with size 32 are alive when comput-
ing the 33-th operator, which exceeds the memory limit of

https://github.com/pku-liang/MAGIS

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

(a)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiii

96 peak memory usage
4free memory for async swap

Renze Chen et al.

56 peak memory usage

. 32x 44 free memory for async swap 32x clneat
onca
— —/]
H 1 """ 2
&

52 peak memory usage
48 free memory for async swap

Concat.

'

Extern Storage OOO

Figure 2. Motivation examples with memory limit of 100. (a) Without any optimization. (b) Using swapping. (c) Using fission
transformation. (d)(e) Using fission transformation and swapping.

100. In Figure 2 (b), although graph scheduling alone can
restrict memory usage to 100 by swapping temporally un-
used tensors into external storage , it causes long latency
due to data transfer. However, incorporating graph transfor-
mations, as shown in Figure 2 (d), more memory is saved and
asynchronous swapping can be utilized to hide data transfer
latency. Although the hardware utilization decreases, the
latency penalty can be compensated by the efficiency gain
provided by asynchronous swapping in this case.

We name the transformation used in Figure 1 (c) and Fig-
ure 2 (c) (d) (e) as Fission Transformation (F-Trans), which
is the dual of A-Trans and can effectively optimize the mem-
ory usage by splitting operators. However, the existing graph
transformation techniques based on rule-based sub-graph
substitution [25, 26, 56, 62] can not be used for F-Trans. First,
F-Trans often greatly increases the graph complexity, hinder-
ing subsequent optimization. Second, F-Trans involves a vast
search space, since it can be applied to almost any sub-graph.
For example, Figure 2 (e) uses two different F-Trans, and
even for such a simple network in this example, the search
space for feasible F-Trans is huge. Finding efficient ways to
represent and search for F-Trans is a challenge.

In addition, coordinating graph transformations with graph
scheduling is critical for optimizing memory usage with
graph transformations. Figure 2 (c) shows that applying
graph transformations alone can optimize memory usage,
but excessively fine-grained operator splitting may result in
high performance costs. Instead, combining graph transfor-
mation and graph scheduling as in Figure 2 (d) can signifi-
cantly reduce memory usage and achieve shorter latency by
jointly balancing the memory and performance trade-offs of
both transformation and scheduling.

3 Design Overview

Figure 3 shows the overall design of MAGIS. It accepts a
DNN graph and outputs the optimized graph and schedule.
MAGIS has four main components: M-State, M-Analyzer,
M-Rules, and M-Optimizer.

610

i Computation Graph Fission Hierarchy Tree M-State :
i (F-Tree) Best Schedule '
i {Ayn=1 0,1,2,4,5,7,..,14)]
: B n=1 n=4 Simulation/Profile Result |
E n=2 Peak Mem: ... Latency: ... i
e .I_ ___________________________________ g
Graph b ST ey
DD Simulator & Profiler [M-Rules (85)
Initial Schedullng 7 1

TASO Transform Rules
(A-Trans & I-Trans)

M- Optlmlzer (86)

Apply Transform Rules #+-- Fission Hierarchy Tree

Mutation Rules

Scheduling-based Rules
(Re-mat. & Swapping)

\
i
'
i
:
i 1
' :
1 Incremental Scheduling |
\ J

Best M-State

i If F-Tree needs update

Figure 3. Overview of MAGIS.

M-State represents the optimization status, including com-
putation graph, fission hierarchy tree (F-Tree), best schedule,
and simulation & profile result. F-Tree represents the hi-
erarchical search space of fission transformation (F-Trans),
where a node with n = 1 represents a potential sub-graph &
dimension candidate for F-Trans, and a node with n > 1 rep-
resents a sub-graph already been split via F-Trans along some
dimension into n parts. M-Analyzer generates the search
space of fission transformation (F-Trans), by constructing
the fission hierarchy tree (F-Tree) according to the compu-
tation graph. M-Optimizer coordinates the graph transfor-
mations (including F-Trans) and scheduling to optimize the
latency & memory. M-Rules provide the transformations
for M-Optimizer, including "TASO rules" used in previous
works [25, 26, 56, 62], F-Tree mutation rules for manipu-
lating F-Tree to reflect F-Trans applications on the graph
(§5.1) , and scheduling-based rules decomposed from graph
scheduling. Note that F-Trans is decoupled as F-Tree and
mutation rules applied on the F-Tree. These rules are inte-
grated with others (e.g., TASO rules, scheduling-based rules)
in M-Rules, forming a unified optimization space explored
by the M-Optimizer.

MAGIS: Memory Optimization via Coordinated Graph Transformation and Scheduling for DNN

Shape
N, T,C]
[H, h,C]
[N, H, T, hl]
[N,H,T,T]
[N, H,T,T]
[N, H, T h]
[C, H, h]
N, T,C]
N, T,C]

MM: Matmul

BMM: Batch MM

SM: Softmax

(a) Graph G of self-attention (b) Shapes of each node in G

Batch dimension

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

(v3,1)
(v6,1) (v6,2) (v6,3)
O (o, 1) (vo,2) (vo,—1)
O (1, 1) (r11,-1) (v11,2)
O (12, 1) (v12,2)

Head dimension Sequence dimension

(c) Some sub-graphs of G’s D-Graph

Figure 4. Example of D-Graph. N, T, C, H, h represents batch-size, seq-len, hidden-dim, num-heads, head-dim respectively.

D Input of § D Output of § Slice Concat Add

(v, 1) (vg,—1)

(b)

(c)

Figure 5. F-Trans f = (S, D, n) (n = 2) in graph G, which is
simplified from the training-graph of an MLP. (a) Sub-graph
S = {uvs, 4, V5, U6, V7, Vg }. (b) D-Graph D, which represents the
batch-dim of S’s activation. (c¢) Result graph after F-Trans.

MAGIS takes a computation graph as input. The graph
and its initial schedule are analyzed by M-Analyzer, which
constructs the F-Tree, outputs the initial M-State and sends
the M-State to the M-Optimizer. M-Optimizer applies M-
Rules to produce new M-States by mutating some sub-graphs
or sub-F-trees. Note that the rules will not choose the sub-
graph spanning the boundary of the sub-graphs affected by
F-Trans (the sub-graph belonging to the F-Tree node with
n > 1) for transformation. This is because for a region R
already affected by F-Trans, the rules will not transform the
sub-graph S that partly intersects with R, as some nodes
of S will be split during execution while some not. It then
performs fast incremental scheduling on these new graphs,
utilizing the mutated graph region of the transformation and
prior schedules, to quickly derive near-optimal schedules and
associated profile results. Effective M-States are iteratively
fed back to M-Optimizer. Besides, if a graph transformation is
applied on a sub-graph that has not been affected by F-Trans,
M-optimizer will query M-Analyzer to update the F-Tree in
the new M-States.

The remainder of this paper is structured as follows: §4
introduces M-Analyzer of MAGIS, §5 discusses M-Rules, and
§6 details M-Optimizer.

611

4 M-Analyzer

In this section, we will first introduce Dimension Graph
(D-Graph) and use it to define F-Trans. Then we propose
F-Tree as an abstraction of the optimization space/state of F-
Trans, and provide an algorithm to construct a light-weight
F-Tree considering F-Trans only on some sub-graphs that
are selected based on dominator tree and memory hot-spots.

4.1 Dimension Graph

Intuitively, an F-Trans splits a sub-graph along a "dimension"
running through it. Therefore, we propose Dimension Graph
(D-Graph) to identify the graph-level dimensions.

Given a graph G where v € V(G) has s, dimensions
in its output tensor and r, reduce-axes in its computation,
we define D-Graph D = D(G) where for each v € V(G)
and i = —-ry,...,—2,—1, 1,2, ..., s,, there’s (v,i) € V(D). For
each (u,0) € &(G), if the i*" dimension of u and j** dimen-
sion of v correspond to the same spatial-axis?, then there’s
({u, 1), (0, j)) € &(D); and if the i** dimension of u cor-
responds to the j*# reduce-axis of v’s computation, then
there’s ((u, i), (v, —j)) € E(D). For instance, a MatMul oper-
ator ¢ (expressed as c¢[m,n] = > ;. a[m, k] X b[k, n], where
m, n are ¢’s dimensions, and k is the reduce-axis) with its
inputs a,b € pre(c) provides connections ({a, 1), {c, 1)),
(<aa 2>s <C, _1>)s (<b’ 1>s <C> _1>)s (<b’ 2>s <C> 2)) € S(D)

Example. Figure 4 (a) illustrates graph G, extracted from a
transformer block [55], with shapes detailed in part (b). Part
(c) depicts some sub-graphs of D(G), like one with batch-
dimensions from tensors excluding vy, vz, v3, v19, one with
head-dimensions from tensors excluding v, v12, and another
with sequence-dimensions from tensors except vy, vs, 3, v1¢.

4.2 Fission Transformation

With the help of D-Graph, we can define an F-Trans of graph
G as f = (S,D,n), where S € V(G), D is the D-Graph to
split sub-graph G[S] along, n is the fission number. It has the
following constraints: (1) G[S] is weakly connected. (2) G[S]
is convex: G.inps(S) N Uyeg.outs(s) G-des(v) = 0. (3) The
graph after fission has no redundant computation, requiring

?Here we do not consider spatial-axis with sliding-window, such as the
height axis of a 3 X 3 convolution; we will improve it in future work.

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Algorithm 1: M-Analyzer: F-Tree Construction

input :graph: G; max-level: L
output:fission hierarchy tree: F
1 F:=0;
2 H :=MemoryHotspots(G);
3 for D € connected components of D (G) do
4 G’ := subgraph of G induced from D;
5 T:=7(G);
6 s := GetScores(G’,T,H);
7 Smax = MaXyey (gr) s[v];
8 if S;nax < 0 then continue;
9 forie {1,2,..,L} do
Vi={ve V(G) |i/L < s[v]/smax < (i+1)/L};
for vgom € {v eV | T.des(v) NV =0} do
S :=T.des(vgom) \ {Vdom};
D’ := subgraph of D induced from S;
f=(sD.1);
if fisvalid then F:=FU {f};

16 return F;

that Yo € S, there’s exact one i € Z s.t. {v,i) € V(D), and
V(u,0) € E(G[S]), 3i, j € Zst. (u,i), (v, j)) € E(D).

Given an F-Trans f = (S, D, n) of G, the result graph after
F-Trans is a graph with n split parts of G[S]. Vu € G.inps(S),
if 3i > 0s.t. (w, i) € V(D), then u will be sliced for each
split part, otherwise shared by them. Yo € G.outs(S),if 3i >
0 s.t. (v, i) € V(D), then v will be computed by merging the
related outputs of split parts, otherwise reducing them. Note
that, the split parts are executed sequentially to save memory
by timely freeing intermediate tensors of each part at the
cost of lower hardware utilization (e.g., parallelism, locality)
due to smaller operator shapes.

Example. Figure 5 demonstrates an example of F-Trans
f =(S,D,n) with n = 2. v; is a weight tensor, so there’s no
(v1,i) € V(D); so in the result graph v, is shared by each
split part. Other inputs, vy and v,, are sliced for each part. vg
is the gradient of v;, computed by adding along batch-dim,
so (vs, —1) € V(D); so in the result graph vg is computed by
adding the outputs of each split part. Other outputs, v and
v7, are computed by concatenating the outputs of each part.

4.3 Fission Hierarchy Tree

Directly applying F-Trans to a graph will significantly in-
crease the complexity, especially when the fission number
is large. Since each F-Trans divides a graph into several iso-
morphic sub-graphs, we can save only one of them. Instead
of transforming the original graph directly, we construct
a fission hierarchy tree (F-Tree). Each tree-node in the F-
Tree records a F-Trans f = (S,D,n). For any tree-node
f =(S,D,n) and its parent f* = (S’,D’,n’), we have S C §’.
Figure 3 displays an example of F-Tree, where each node
represents a sub-graph surrounded by a dashed box in the

612

Renze Chen et al.

left-side graph and the n next to the node is the fission num-
ber. When n = 1, it indicates that the node is an fission
candidate, and when n > 1, it indicates that the subgraph
of the node has been split into n parts by F-Trans. Such ab-
straction significantly reduces the complexity of subsequent
graph transformation and scheduling.

However, the search space for F-Trans on graph G is still
large, reaching up to O(ZW(G)'Z) since almost any convex
sub-graph can be a fission candidate. Indeed, arbitrarily ap-
plying F-Trans does not guarantee peak memory reduction.
Effective memory saving can be achieved only when F-Trans
targets sub-graphs containing memory hot-spots (§2.1).

Analysis. For an F-Trans f = (S, D, n) of graph G, with
memory hot-spots as H and I = G.inps(S). My and My
represent the peak memory usages before and after F-Trans,
shown in Equation (1). Since inputs I reside in memory when
executing split sub-graphs, My should combine their sizes
2oer 0] with Xpc s |0] (sizes of memory hot-pots beyond
S) into X ye (pn\syur [0]- The peak memory reduction after F-
Trans, i.e., My — My, is shown in Equation (2).

My=Seen ol Mp= Soensorlol+ Soerns i (1)

Mo = Mg = Ypepns (1=)10l = Xpenm o] (2

Metric. We can observe that to make M, — My larger,
we need to ensure that S includes more memory hot-spots,
while I consumes less memory. To minimize input memory
usage of F-Trans, we select a node and consider the sub-
graph dominated by it as the fission candidate, ensuring the
sub-graph has only one entry node >. We define a metric
called "memory heat", representing the total size of hot-spots
in a sub-graph dominated by a node. Given the graph G
with dominator tree T = 7 (G) and memory hot-spots H,
we calculate v’s memory heat with Equation (3), where H N
T.des(v) are the memory hot-spots dominated by v. We
then assign a score for each node v as shown in Equation (4),
estimating the potential peak memory reduction after F-
Trans on the sub-graph dominated by v, where the first term
is the reduction of the sizes of memory hot-spots, and the
second term is the sizes of input nodes which should reside
in memory during the execution of each split part after F-
Trans. We typically set n = 2 to ensure that just splitting the
sub-graph into two parts also yields benefits.

heat(v) = ZweHmT.des(v) [wl (3)
SCOFE(U) = (1 - %)heat(v) - ZueG.inps(T.des(v))\H |u| (4)

Algorithm. Based on the metrics discussed above, we
propose Algorithm 1 to construct an F-Tree. The main idea
is identifying nodes with scores (Equation (4)) distributed in
different intervals, since a higher score indicates more peak
memory reduction of F-Trans, but may also imply larger
latency overhead. The hyper-parameter L controls the num-
ber of intervals and the F-Tree’s max-level. This algorithm

3Strictly, weight tensors may also be input nodes, as discussed in §2.1

MAGIS: Memory Optimization via Coordinated Graph Transformation and Scheduling for DNN

D Memory Hot-spot

(a)

heat {121 11 10} 5
incal Ml et

!
score! 6 1551 511
=+ ==+

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

¥
i
i
i
T

T
I
Tt

Figure 6. Example of F-Tree construction based on Algorithm 1 (with L = 5). Each tensor has a size of 1. (a) G’ in Algorithm 1
line 4. (b) Dom T = 7 (G’). (c) Scores calculated based on Equation (3) (4), where nodes in orange boxes are selected dominators
(vgom in Algorithm 1 line 11). (d) Selected sub-graphs (S in Algorithm 1 line 12). (e) Constructed F-Tree.

inputs graph G and max-level L, iterating over connected
components D of D (G) (line 3), extracting sub-graph G’ and
its dominator tree T (lines 4-5), then calculating scores based
on Equation (3) (4) (line 6). Upon obtaining the maximum
SCOre Spmqayx (line 7), it segments [0, 1] into L intervals, select-
ing nodes in different intervals based on normalized scores
s[0]/Smax (lines 10-11), and generating fission candidates
from sub-graphs dominated these nodes (lines 12-15). The
F-Tree is constructed from these sub-graphs.

Example. Figure 6 gives an example of F-Tree construc-
tion for a computation graph simplified from the training
graphs of various models. For demonstration, we only show
one connected component D € D(G) here. Part (a) is the
G’ in Algorithm 1 at line 4. Part (b) shows dominator tree
T = 7 (G’). Part (c) shows the calculated results of heat and
score based on Equation (3) (4). Here L = 5, so there are 5
normalized score intervals [0.2, 0.4), [0.4,0.6), [0.6,0.8), [0.8,1),
[1,1], and the nodes in dashed boxes are selected. Part (d)
shows the selected sub-graph nodes as fission-candidates.
Part (e) shows the finally constructed F-Tree.

5 M-Rules

M-Rules in MAGIS borrow the rules of Aggregation Trans-
formation (A-Trans) and Interim Transformation (I-Trans)
from previous works like TASO [25], shown by Figure 1 (a)
(b). We call these TASO Rules, which can be used to optimize
latency. Beside of these, in this section, we will introduce
F-Tree Mutation Rules and Scheduling-based Rules to further
optimize memory and latency.

5.1 Fission Hierarchy Tree Mutation Rules

All tree-nodes f = (S, D, n) of the initial F-Tree constructed
by Algorithm 1 have n = 1. We refer them as disabled nodes,
whose sub-graphs have not performed F-Trans. Node with
n > 1 is called enabled node, which means its sub-graph
has already performed F-Trans and is split into n parts. The
F-Tree Mutation Rules mainly change the n of the F-Tree
node to apply F-Trans to the graph. They include:

e Enabling Rule. It enables a disabled leaf node of F-
Tree or a parent node of an enabled node without
enabled ancestors, as shown in Figure 7 (a).

613

o Lifting Rule. It disables an enabled node without en-
abled ancestors and enables its parent node, as shown
in Figure 7 (b).

¢ Disabling Rule. It disables an enabled node that has
no enabled descendant node, as shown in Figure 7 (c).

e Mutating Rule. It increases an enabled node’s fis-
sion number n to the next number that can divide the
dimension length, as shown in Figure 7 (d).

With the help of M-Analyzer and above rules, we decouple
F-Trans into F-Tree construction before optimization phase
and F-Tree mutation during optimization phase. It can be
observed that we actually start enabling leaf nodes first and
gradually move towards nodes closer to the root. Since ap-
plying fission on the nodes closer to the root has a greater
impact on memory and latency, we start from the leaves for
smaller mutation steps and smoother search.

5.2 Scheduling-based Rules

We introduce two additional operators, Store and Load, to
represent swapping behaviour in graph scheduling. Based
on this, we add four rules as follows:

e Re-materialization Rule. It separates one user B
from an operator A with multiple users and lets it use
a recalculated operator A’, as shown in Figure 8 (a) (b).

e De-re-materialization Rule. It is the dual of the re-
materialization rule and combines two operators A
and A’ of the same type with the same inputs into a
single operator, as shown in Figure 8 (c) (d).

e Swapping Rule. It inserts Store and Load between
an operator A and one of its users B to represent that
A will be swapped-out to external storage first, and
then swapped-in when B needs to use it, as shown in
Figure 8 (e).

e De-swapping Rule. It is the dual of the swapping rule
and removes Store and Load between two operators,
as shown in Figure 8 (f).

With the help of the rules above, we can decompose graph
scheduling into graph transformation and re-ordering, where
transformation phase decides what operators need to be re-
computed / swapped, and re-ordering decides when to re-
compute / swap. Then the trade-offs between memory and
latency can be moved to graph transformation phase, and

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA Renze Chen et al.

Figure 7. lllustrations of F-Tree Mutation Rules. (a) Enable an F-Tree node. (b) Lift an F-Tree node. (c) Disable an F-Tree node.
(d) Increase the fission number n (with dimension length N = 12).

(a) Re-mat. Rule 1 (b) Re-mat. Rule 2 (c) De-Re-mat. Rule 1 (d) De-Re-mat. Rule 2 (e) Swapping Rule (f) De-Swapping Rule

Figure 8. Scheduling-based Rules, representing the transformations decomposed from graph scheduling. The edges marked
with an asterisk (*) represent zero or multiple edges

Algorithm 2: M-Optimizer: Incremental Scheduling 6.1 Incremental Scheduling
input :old, new graph: G,14, Gnew; To obtain memory usage and performance of a graph, we
old mutated sub-graph nodes: So/a; need to perform graph scheduling. Performing full graph

schedule of old graph: /514
output :schedule of new graph: ¥4y

1 function GetRescheduleInterval(G,S,¢):

scheduling after each graph transformation is expensive. To
address this issue, we design an incremental scheduling algo-
rithm that determines the subset of the graph that needs to

i func;inof;x; ?:?;F llinc; (l: ‘é) be rescheduled based on the previous scheduling and the sub-

s while [<20 A (7 > 10 V nw(0) < 4) A nw(0) < A do graph scope impacted by the previous graph transformation.

5 | A=mwe)si=itdio=ylilil=1+1; This approach allows us to perform scheduling only on the

return i necessary sub-graphs, reducing the overhead of scheduling.

, Is = {i|i=1,... || ify[i] € S}; Algorithm 2 presents the details. It first obtains the se-

s return ExtendBound (min Is, —1), ExtendBound (max I, 1); quence of operators that need to be rescheduled in the origi-

. b;g,end = GetRescheduleTnterval (Gota, Sotd, Yoid): nal graph by using GetRescheduleInterval (line 9). Next,

10 Snew = V(Gew) \ (Voral: beg] U troralend :]); the corresponding sub-graph S, is obtained for this se-
11 ¥ = {DpSchedule(S) | S € GraphPartition(Smew)}: quence in the new graph (line 10), which is then partitioned
12 return Merge (Yo14[: beg], MergeSubSched (W), Yorq[end :1); into several sub-graphs that can be independently scheduled

using GraphPartition (line 11). The scheduling of each sub-
graph is performed using the dynamic programming-based

graph scheduling phase only needs to consider re-ordering algorithm in previous work [3] (line 11), and finally, the re-
that generally has no effect on total execution latency. Such sulting schedules are combined to form the schedule for the
decomposition makes the scheduling after each graph trans- new graph, which is integrated with the schedule for the
formation step much simpler. original graph (line 12).

Heuristic. Considering the Re-materialization Rule and GetRescheduleInterval is a crucial processes in Algo-
Swapping Rule can be applied to almost any operator, result- rithm 2, designed to find the interval in the original schedule
ing in a large search space that slows down optimization, in that needs to be rescheduled. The interval should not be
the actual sub-graph pattern-matching process, these two too small, otherwise the rescheduled result would be sub-
rules can be selectively applied, filtering out sub-graphs that optimal or even incorrect. Also, the interval should not be
do not contain memory hot-spots. too large, otherwise the rescheduling process will consume

too much time. Trading between the optimization quality
6 M-Optimizer and time cost is important.
In this section, we first introduce incremental scheduling, to We introduce narrow waist (NW) value nw(v) of a node
efficiently generate the optimal schedule for the transformed v to solve it. For a graph G and a node v € V(G), nw(v) is

graph using information from the mutated sub-graph and defined as [V (G)| - |G.anc(0)| - |G.des(0)[-1, ie., |V(G) \
the previous schedule. We then present the top-level search G.anc(v) \ G.des(v)| — 1. The NW va@ue can be used to
algorithm, which prioritizes M-States based on both memory measure the number of nodes that are independent of the

and latency and transforms current best M-States using M- given node. A lower nw(v) implies that more nodes are de-
Rules to generate new M-States. pendent on v and v depends on more nodes, which makes

614

MAGIS: Memory Optimization via Coordinated Graph Transformation and Scheduling for DNN

Algorithm 3: M-Optimizer: Search Algorithm

input

:input graph G; memory constraint M;
F-Tree max-level L;

output :optimized M-State pipess

1 function BetterThan(uy, 2,8 = 1):
2 L return (max(p;.mem, M), py.1lat) <

(max(d X pp.mem, M), S X pp.lat);
3 function GraphHash(G):

4 for v € topo-order(G) do
5 L Xy = hash(hash(v) @ (@ueG.pre(v) Xu));
6 return hash(},eq x0);

7 Upest :=InitState(G); X := 0;
8 Q :=PriorityQueue({upess}, BetterThan);
9 while Q # 0 do
1= Q.pop(); x :=GraphHash (u.G);
if x € X then continue;
X :=XU{x};
if y1’s F-Tree needs update then
L p :=Analyze(u, L); # Algorithm 1

10
11
12

13

for p/ eApplyTransformRules(y) do
y' ==ApplyIncrementalSchedule(y’); # Algorithm 2
if BetterThan(/, upess) then ppesy =1
if BetterThan(y/, ppess, 1.1) then Q.push(y’) ;

19 return ppegs;

v a suitable dividing point for topological ordering prob-
lem. Specifically, all the nodes that v depends on should be
scheduled before v, and all the nodes that are dependent
on v should be scheduled after v, providing a natural par-
tition of the scheduling problem. Also, after we find the
optimal schedules separately for G.anc(v) and G.des(v), the
peak memory consumption is guaranteed to be less than
Mopt + 2ioe v (G)\G.anc(0)\G.des(v) 10|, where Moy, represents
the peak memory achieved under the optimal scheduling
of G. If nw(v) = 0, then the scheduling problem for the
graph can be divided into two completely independent sub-
problems at v. We design a heuristic algorithm based on the
NW value to select interval whose boundary NW values are
as small as possible (line 2-6), where the constants 20, 10, 4
are empirical hyper-parameters which perform well in prac-
tical. The idea behind GraphPartition is to use nodes with
nw(v) < 1 as dividing points to partition each connected
component of the given graph into multiple sub-graphs.

6.2 Top-level Search Algorithm

MAGIS adopts a greedy search algorithm to optimize graphs.
There are two modes of optimization supported by MAGIS:
optimizing latency given memory limit or optimizing mem-
ory given latency limit. Algorithm 3 shows the search algo-
rithm for the former mode.

The inputs of Algorithm 3 consist of a graph G, a given
memory limit M, and F-Tree max-level L. We first schedule
and analyze the given graph to obtain an initial M-State (line

615

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Table 2. Workloads for Evaluation

Name Batch | Other Configuration
ResNet-50 [19] 64 image-size=224

BERT-base [12] 32 sequence-length=512
ViT-base [15] 64 image-size=224, patch-size=16
U-Net [45] 32 image-size=256

U-Net++ [73] 16 image-size=256
GPT-Neo-1.3B [6] | 32 sequence-length=512
BTLM-3B [13] 32 sequence-length=512

9). Then we construct a priority queue for storing M-State
(line 10) where the priority is determined by the BetterThan
function (line 1-4) that compares latency first when both M-
States satisfy the memory limit M; otherwise, it compares
memory (note that we compare (a,b) < (c,d) with lexico-
graphical order). We then iteratively pop an M-State yu (line
12) and apply M-Rules to generate a series of new M-State
(line 17). The Analyze function (line 16) will update the F-
Tree in M-State p if its previously mutated sub-graph is not
influenced by F-Trans. We perform incremental scheduling
on the newly generated M-State p’. Then we will push /'
to queue if it’s not worse than pp.s; in a relaxed condition
(controlled by a small coefficient §, empirically set to 1.1). To
prevent redundant search, we borrow the idea of Weisfeiler-
Lehman Test [48] to hash a given graph (line 5-8, line 12-14),
where @ means bytes concatenation operation.

To reduce the overhead of performance measurement, we
implement a simulator with an operator performance cache.
It saves the actual execution latency of operators, and uses a
simulation approach to obtain the overall performance and
memory usage of the whole graph with a schedule. When
considering asynchronous swapping, re-ordering involving
Store/Load operators can also slightly affect latency. To
address this, our re-ordering strategy is to place the Store
as early as possible and place the Load as late as the data
transfer latency can be just hidden.

7 Evaluation
7.1 Experiment Setup

We use rustworkx [52] to implement MAGIS’s graph data
structure. We implement a code generation backend to gen-
erate Python code calling PyTorch APIs based on the graph
and schedule. We use PyTorch’s CUDA Stream API to imple-
ment asynchronous Store and Load. The data is swapped
between GPU memory and CPU memory. Although our cur-
rent implementation targets NVIDIA GPU, our methods can
be easily ported to other platforms.

Our main baselines for comparison are: (1) PyTorch [36]:
unoptimized graphs are directly converted into PyTorch code
after simple topo-order scheduling, acting as the baseline for
memory usage and execution latency. Note that basic mem-
ory saving are applied for this baseline, that is, future-unused
tensors are deleted immediately. (2) POFO [5]: state-of-the-
art work for memory optimization of networks with simple

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

structures and linearly connected cells, considering both
re-materialization and swapping. We use the open-sourced
implementation of POFO *. (3) DTR [27]: state-of-the-art
work using re-materialization technology for memory opti-
mization of arbitrary networks. We use the implementation
of DTR in MegEngine [1] (its eager mode and PyTorch both
call cuBLAS & cuDNN for computation on NVIDIA GPUs
with the same performance). (4) XLA [46]: state-of-the-art
DNN compiler using a greedy re-materialization algorithm
for memory optimization. (5) TVM [9] (Relay [43]): state-
of-the-art DNN compiler, performing basic memory sav-
ing to reclaim future-unused tensors. (6) Torch-Inductor [2]
(TI): state-of-the-art DNN compiler leveraging OpenAI Tri-
ton [50], performing basic memory saving to recycle tensors
that are no longer used in the future.

Table 2 shows the workloads we use for evaluation. We
select the training processes of the following networks as
experiment workloads: (1) Classic CNN classification net-
work: ResNet [19], with linear inter-cell connection and sim-
ple intra-cell structure. (2) Classic transformer networks:
BERT [12] and ViT [15], with linear inter-cell connection
and complicated intra-cell structure. (3) Image segmenta-
tion networks with long skip-connections: U-Net [45] and
U-Net++ [73], with complicated inter-cell connections (U-
Net++ is even more complex than U-Net) and simple intra-
cell structure. (4) Large language models: GPT-Neo-1.3B [6]
and BTLM-3B [13], with much larger weights and deeper
structures compared with classic transformer networks. Note
that the workloads diversely span from language models to
vision models, from large models to small models. The data
type is bf16 for GPT-Neo & BTLM, and tf32 for others.

The platform we use for our experiments is an Intel work-
station equipped with 20 Intel(R) Xeon(R) Silver 4210R CPUs,
an NVIDIA GeForce RTX 3090 GPU, CUDA version 11.6,
cuDNN version 8.4.0, PyTorch version 2.1.0, MegEngine ver-
sion 1.12.3, TensorFlow version 2.15.0, and TVM version
0.14.0. The max-level parameter L of Algorithm 3 is 4 by
default. For every optimization process, we run MAGIS with
a time budget of 3 minutes. For each baseline, we first use
TASO rules (mainly the A-Trans rules which merge opera-
tions like the QKV-projections in a transformer-block into a
single operation and split the result later) to optimize the net-
work to ensure a fair comparison. We measure the peak mem-
ory usage of the optimization results of MAGIS, PyTorch,
POFO, and Tl via torch. cuda.max_memory_allocated; for
DTR, we use megengine.get_max_allocated_memory; for
XLA,weuse tf.config.experimental.get_memory_info;
for TVM, we hack the memory allocation information of its
memory planner. Note that, since baseline PyTorch cannot
run the workload settings of GPT-Neo and BTLM in the ex-
periment platform because of out-of-memory, we measure
its latency and peak memory using MAGIS’s simulator.

4https://gitlab.inria.fr/hiepacs/rotor/-/tree/offload

616

Renze Chen et al.

(a) Latency Overhead < 10%
1

2 o8 _ - M
5

o
T 06

=
2 04
S o2
0 L | |
ResNet (b64) BERT (b32) ViT(b64) UNet (b32) UNet++ (b16) GPT-Neo (b32)

(b) Latency Overhead < 5%

1
2 08 M

&
T 06

o
2 04
S o2
0 L | |
ResNet (b64) BERT (b32) ViT(b64) UNet (b32) UNet++ (b16) GPT-Neo (b32)

BTLM (b32)

oom

BTLM (b32)

BMAGIS @POFO @DTR OXLA BTVM @TI

Figure 9. Peak memory ratio compared to un-optimized
PyTorch (lower is better). "OOM" means the memory usage
exceeds the memory limit of our experiment platform.

FAILURE

ResNet (b64) BERT (b32) UNet (b32) UNet++ (b16) GPT-Neo (b32) BTLM (b32)

(b) Memory Ratio < 40%

VIT (b64)

FAILURE

ResNet (b64) BERT (b32)

VIT (b64) UNet (b32) UNet++ (b16) GPT-Neo (b32) BTLM (b32)

EMAGIS @POFO @DTR OXLA @TVM @TI

Figure 10. Latency overhead compared to PyTorch without
optimization (lower is better). "FAILURE" means the memory
ratio cannot be optimized to meet the constraint.

7.2 Experiment Results

7.2.1 Memory Optimization with Latency Constraint.
We first evaluate the memory optimization effects of MAGIS
and baselines under 10% and 5% latency overhead constraints.
Results are shown in Figure 9. With 10% latency overhead
limit, MAGIS optimizes peak memory to 15%~60% of Py-
Torch’s, outperforming other baselines (60% at best). TVM
and TT only perform basic memory saving like the PyTorch
baseline, so their optimized memory ratios are near to 100%.
MAGIS’s memory is 15%~80% of POFO’s, 20%~85% of DTR’s,
and 15%~70% of XLA’s. At 5% latency overhead limit, MAGIS
optimizes peak memory to 25%~70% of PyTorch’s, 25%~80%
of POFQO’s, 35%~80% of DTR’s, and 25%~80% of XLA’s.

For ResNet, when the latency overhead limit is 10% (5%),
MAGIS’s peak memory is around 80%~85% (75%~80%) of
POFO & DTR & XLA. MAGIS’s results are closed to base-
lines’, mainly because ResNet has a simple structure, and the
benefits brought by our methods are limited.

For BERT and ViT, MAGIS achieves 50%~70% (65%~75%)
of the baselines’ memory at 10% (5%) latency overhead con-
straint. The relative results of MAGIS are better than ResNet

https://gitlab.inria.fr/hiepacs/rotor/-/tree/offload

MAGIS: Memory Optimization via Coordinated Graph Transformation and Scheduling for DNN

(a) ResNet-50 (batch=64)
1.2
1

0.8

—— MAGIS

(b) BERT-base (batch=32)

° T 06
oF0 £ o £
§ 06 § 04
DTR S 04 o)
> >
XA 5 " -\-\I—.\
[Q
——TVM 5 0 &8 9
y 02 02 04 06 08 4 + 02 04 06 o8
0.4 -0.2

Memory Ratio Memory Ratio

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

(c) UNet (batch=32) (d) GPT-Neo (batch=32)

1 0.7
T 06
- 038 5
I < 0.5
£ 06 2 04
g]
S 04 z 03
z $ 02
£ 02 =
2 801
Lo 8 o
1 -
02 04 06 08 1 0 02 04 06 08 1

-0.2

Memory Ratio Memory Ratio

Figure 11. Latency & memory curves of MAGIS and baselines. MAGIS can achieve Pareto optimal in almost all cases.

0.6

- 05 ViT (batch=64, patch-size=16)

3

£ 04

303 e " —o—MAGIS

>

2 0.2 POFO

i}

® 01 '\,\'___' POFO (factor=32)
0 POFO (factor=16)

0 0.2 04 0.6 038 1

—— POFO (factor=8)
Memory Ratio

Figure 12. Comparing MAGIS with POFO. The network
used by POFO has been pre-processed with micro-batching
(with different factors).

due to more intra-cell complexity of transformer networks.
MAGIS performs better on ViT than on BERT due to shorter
sequence length of ViT. Sequence length has a larger im-
pact on latency than on peak memory, making it more chal-
lenging to optimize the memory under a given latency con-
straint with longer sequence. For UNet and UNet++, MAGIS
achieves 15%~35% (25%~70%) of baselines’ memory at 10%
(5%) latency overhead constraint. MAGIS performs better
on these two networks compared to other networks due to
more complex inter-cell structures which provide more opti-
mization space for graph transformation. For GPT-Neo and
BTLM, MAGIS maintains <40% (<60%) of PyTorch’s memory
at 10% (5%) latency overhead limit. Only XLA avoids OOM
among baselines for GPT-Neo. All baselines are OOM for
BTLM under both constraints.

7.2.2 Latency Optimization with Memory Constraint.
We then conduct experiments to compare the latency opti-
mization effects of MAGIS and other works under 80% and
40% peak memory limits of un-optimized PyTorch. Results
are shown in Figure 10. TVM & TI cannot optimize all the
workloads into 80% memory ratio. POFO almost cannot opti-
mize UNet & UNet++. DTR’s processes for UNet++, GPT-Neo,
and BTLM take too long with a 40% memory limit, and XLA
also cannot optimize these workloads under such constraints.
We mark these cases as "FAILURE" in the figure. With an 80%
limit, MAGIS reduces latency overhead to <5%, better than
POFO (<40% for BTLM, <20% for others), DTR (<15%), and
XLA (<£20%). At 40% memory limit, MAGIS maintains <15%
overhead, while POFO stays at <40%, DTR reaches <45%
for ResNet/BERT/ViT and <70% for UNet, and XLA caps at

<70%. Similar to the previous experiments, MAGIS performs
the best on UNet/UNet++, followed by ResNet/BERT/ViT,
achieving a 1.25X speedup over DTR for UNet under the 40%
memory limit. Among the baselines, only POFO can opti-
mize GPT-Neo and BTLM under the 40% memory limit, but
with much higher latency overhead than MAGIS. Note that
although TASO rules bring some peak memory overhead,
the overhead is small (around 5% on average) since these
rules only enlarge local memory footprint. The baselines
that fail to meet the memory constraints in Figure 10 still
fail without applying TASO rules.

7.2.3 Trade-off Curves of Latency & Memory. We plot
the memory & latency trade-off curves in Figure 11. Note
that XLA, TVM, and TI may achieve lower latency than
the PyTorch baseline when there’s no memory constraint,
resulting in points below the horizontal line. When memory
ratio is 1, MAGIS is faster than PyTorch but slower than XLA,
TVM, and TI, due to MAGIS currently not implementing the
sophisticated compilation optimizations like operator fusion
as these compilers do. From the results, it can be observed
that MAGIS’s curve remains mostly below the baselines’
curve. This indicates that we have achieved a better Pareto
boundary in the dual-objective optimization of memory and
latency, which means that, given a latency constraint, MAGIS
achieves lower memory consumption, or given a memory
constraint, it achieves lower latency.

We observe XLA’s curve is nearly linear but experiences
substantial latency overhead under low memory limits, since
when memory limit is tight, re-computing one operator
might depend on another operator re-materialization. The
re-materialization used by DTR is better than XLA’s greedy
algorithm, enabling a near-linear trade-off between memory
and latency even under tight memory limits. POFO’s curve
is also near-linear as it also adopts swapping, which balances
memory and latency in a near-linear ratio. When the memory
constraint it not tight, MAGIS’s curve is near-linear with a
slope lower than baselines since it also employs graph trans-
formations such as F-Trans to balance memory and latency.
However, under strict memory limits, MAGIS’s curve be-
comes increasingly steep because even F-Trans incurs large
overhead to optimize memory within tight constraint, caused
by poor locality of on-chip memories due to small operators
split from F-Trans.

617

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

(a) Latency Overhead < 10% (b) Latency Overhead < 5%

1 \ 1

Memory Ratio
e e o o
I o o

S
<

Latency Overhead

&
<

o
@

o
IS

60 90 120 150 180

Elapsed Optimization Time (secs)

0 30 60 90 120 150 180 0 30

Elapsed Optimization Time (secs)

(c) Memory Ratio < 80%
y

o
o 2
[N

S o 9o
o o o
5 o ®

o
o
o

Renze Chen et al.

(d) Memory Ratio < 40%
0.3

o
N
@

o
N

naive-fission

naive-sch-rule

max-level=2

Latency Overhead
o
o =
[
L

max-level=4

o
o
o)

max-level=8

0

Elapsed Optimization Time (secs)

o
YD
o

30 60 90 120 150 180

Elapsed Optimization Time (secs)

30 60 90 120 150 180 0

Figure 13. Heuristic breakdown of MAGIS when optimizing BERT workload in 3 minutes with the constraints used in §7.2.1
and §7.2.2. The diamond "¢" in a curve is the time point after which its optimization result meets the constraint. The square

"0" in a curve is the time point with the best optimization result.

35 11

— speedup geomean

-

Silbgad

I"u "u\l’l|v'uv "W' g

®

1 1 21 31 41 51 61 71 81 91 101 0 10 20 30 40 50 60 70 80 90 100

(a) Time cost speedup (b) Optimization quality

Figure 14. Comparison between incremental scheduling (IS)
and full scheduling (FS). (a) Speedup of IS’s scheduling time
relative to FS’s scheduling time. (b) Schedule result quality
of IS compared to FS.

Total | Trans. | Sched. | Simul. | Hash | Filtered | Others
Count / 7148 | 924 924 7148 6224 /
Cost (secs) | 60 2.52 3.70 8.71 44.82 / 0.25

Figure 15. Optimization time cost breakdown of MAGIS
when optimizing ViT (batch 64) in 1 minutes. "Filtered"
means the duplicated graphs filtered by hash test.

7.2.4 Comparison to Micro-batching. We examine the
effect of graph transformation on memory optimization by
integrating it into baselines. We select ViT as workload and
POFO as target baseline. We focus on F-Trans due to its
substantial memory impact. We apply micro-batching to ViT,
dividing the whole graph (factors: 32, 16, 8) along batch-
dimension to simulate a simple F-Trans. The split sub-graph
are fed to POFO, and execution latency is multiplied by the
sub-graph count.

Figure 12 reveals that graph transformation optimization
enhances POFO’s performance under stringent memory con-
straints. Under different memory limits, POFO performs best
with different factors. This indicates that there are different
trade-off spaces between graph transformation and schedul-
ing. MAGIS outperforms both optimized and original POFO
due to better coordinating transformation and scheduling.

7.2.5 Heuristic Ablation. The heuristics used in MAGIS
main include: H1) F-Tree construction (Algorithm 1) dis-
cussed in §4.3; H2) heuristic used for schedule-based rules
mentioned in §5.2; H3) hyper-parameter L (Algorithm 1

618

and 3) to control the max-level of F-Tree. We conduct a
breakdown experiment with five settings: (D naive-fission:
disabling H1 by randomly selecting valid sub-graph & di-
mension for F-Trans; (2) naive-sch-rules: disabling H2 by
matching schedule-based rules on the whole graph; 3)/®/®)
max-level=2/4/8: setting hyper-parameter L as 2/4/8 (de-
fault is L = 4 for other settings). We evaluate them on BERT
workload under constraints used in §7.2.1 and §7.2.2 with
a time budget of 3 minutes. Figure 13 depicts the curves of
their elapsed optimization time and the historical best results
during searching.

naive-fission performs the worst due to limited F-Trans
optimization of memory, causing up to 70% and 45% higher
peak memory consumption and 10%-12% higher latency
overhead than the best setting. naive-sch-rule outperforms
naive-fission due to enabling H1. But it lags behind others
since it disables H2, slowing down search convergence and
making it challenging to find better results within the time
budget. Settings excluding naive-fission and naive-sch-
rule generally yield better outcomes, with max-level=4
exhibiting the best overall performance. max-level=2 re-
stricts the F-Trans search space due to shorter F-Tree, thereby
reducing optimization potential. Conversely, max-level=8
expands the search space, slowing search and making opti-
mization more difficult; in (d), max-level=8 is even inferior
to naive-sch-rule (with L = 4).

7.2.6 Optimization Time. Figure 15 illustrates the time
costs of different processes in a 1-minute ViT (batch 64) train-
ing optimization using MAGIS. Processes include Transfor-
mation ("Trans."), Scheduling ("Sched."), Simulation ("Simul."),
Hash Test ("Hash"). "Filtered" indicates the number of graphs
filtered out after hash test. "Trans." contributes a minor 2.52s
overhead, while "Sched." stands at 3.7s. "Simul.", necessitated
by operator performance data collection, exhibits the highest
average overhead at 8.71s. "Hash" incurs the highest total
overhead (44.82s), mainly due to filtering duplicate graphs,
effectively reducing other processes’ overhead.

7.3 Evaluation of Incremental Scheduling

We evaluate incremental scheduling (IS) against full schedul-
ing (FS) in terms of speed for 10 randomly generated DNNs

MAGIS: Memory Optimization via Coordinated Graph Transformation and Scheduling for DNN

=
w

UNet (batch=32)

Memory Usage (GB)
=
w o
1 S
N
> 1 f
o
g1

«=@==PyTorch

Py Q MAGIS-1

0 & \F - MAGIS-2
0 100 30 400 500

Execution Timeline (ms)

Figure 16. Execution time & memory usage for UNet.

with structures resembling NASNet [75]. Using TASO’s [25]
graph transformation rules, we conduct 100 rounds of trans-
formations (10 rounds per DNN) after an initial scheduling,.
Both IS and FS employ the DP algorithm from [3] (DpSchedule
in Algorithm 2). Figure 14 (a) illustrates IS’s speed advantage
over FS, achieving a speedup of 4 ~ 30X (10X in average)
across 100 tests. Figure 14 (b) presents the optimization qual-
ity of IS, measured as the ratio of peak memory usage opti-
mized by IS to that optimized by FS. In 94 out of 100 tests, IS
attains the same level of optimality as FS.

7.4 Case Study

We use UNet as a case study to demonstrate the optimiza-
tion effect. Figure 16 depicts UNet’s training time & mem-
ory with PyTorch, MAGIS-1 (memory limited at 80% of Py-
Torch’s peak), and MAGIS-2 (limited at 60%). Both PyTorch
and MAGIS-1 display initial memory increase followed by de-
crease due to activation saving during forward phase and acti-
vation releasing during backward phase. MAGIS-1 has lower
peak memory thanks to re-materialization, swapping, and F-
Trans, but incurs higher latency. MAGIS-2 exhibits dual mem-
ory peaks, caused by a F-Trans covering the whole graph.
This reduces peak memory further compared to MAGIS-1,
yet increases latency overhead.

8 Related Work

In this section, we briefly introduce the related work of
MAGIS, mainly including techniques of graph scheduling
(re-materialization, swapping, and re-ordering) as well as
graph transformation. Some other DNN compilers are also
discussed in this section.

Re-materilization evicts some intermediate tensors and
re-computing them later when needed. It was first applied in
deep learning by [10, 17, 18]. Graph-theoretic analysis is used
in [28, 29]. Checkmate [24] uses Integer Programming (IP) for
optimization. DTR [27] uses heuristic strategies to optimize
re-mat. of dynamic graphs. MONE€T [47] co-optimize re-mat.
and operator implementations.

Swapping stores some tensors on external storage and
reloads them later when needed. vDNN [42], Capuchin [38],
and SuperNeurons [57] use it for DNN training on GPUs.
SwapAdvisor [22] co-optimizes re-ordering, memory allo-
cation, and swapping. TFLMS [30] represents swapping by
special operators and control-flow edges. POET [37] uses

619

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

IP to combine re-mat. and swapping for training on mo-
bile devices. POFO [5] uses Dynamic Programming (DP) to
combine re-mat. and swapping. ZeRO-Offload [41] combines
swapping with distributed training. AutoTM [20] and ZeRO-
Infinity [39] use persistent memory as external storage.

Re-ordering finds proper topo-order of DNNs to opti-
mize memory. Serenity [3] uses DP for optimization. Swa-
pAdvisor [22] considers both re-ordering and swapping. HM-
COS [58] hierarchically searches optimal ordering. Zhong et
al. [72] use IP with variable pruning to speedup optimization.

Graph Transformation originates from compiler’s su-
per optimization [34]. It gradually optimizes the graph with
a sub-graph mutated at each step. MetaFlow [26] uses back-
tracking algorithm, and TenSAT [62] employs equality satu-
ration [60] for searching. TASO [25] generates transforma-
tion rules automatically based on program synthesis. PET [56]
proposed partial equivalent transformation. Unity [54] in-
tegrates distributed parallel optimization into graph trans-
formation. Turner et al. [53] combine graph transformation
with neural architecture search. Compared to previous work,
MAGIS can trade the latency and memory optimization. Re-
garding transformation types, MAGIS investigates the for-
malization and search for fission transformation. We also
propose the re-materialization and swapping rules derived
from graph scheduling, enhancing the coordination between
graph transformation and scheduling.

Other DNN Compilers. Besides the works mentioned
above, many other DNN compilers have been proposed [2,
8,9, 11, 14, 16, 31, 33, 43, 46, 49, 50, 59, 61, 63-71, 74] in re-
cent years. For example, AutoTVM [11], FlexTensor [70], An-
sor [64], and Roller [74] automatically generate/explore tun-
ing space of a single operator or a small sub-graph; UNIT [59],
AMOS [66], and TensorlR [16] automatically map operators
onto hardware accelerators with specialized tensor instruc-
tions; Rammer [33], HFuse [31], and IOS [14] fuse parallel
operators to increase hardware utilization; DNNFusion [35],
AStitch [71], and Apollo [63] fuse chained operators to re-
duce data movement; BOLT [61], Chimera [69], SET [8],
TileFlow [67], and Welder [49] additionally explore fusion
space for compute-intensive operators.

9 Conclusion

We propose MAGIS, a DNN optimizer for memory & latency
with a systematic design of fission transformation effective
coordination between graph transformation and scheduling.
Experimental results show that compared to state-of-the-art
methods, MAGIS only uses 15% ~ 85% memory with same
latency constraint and obtains a better memory & latency
Pareto boundary.

Acknowledgments

This work is supported in part by the National Natural Sci-
ence Foundation of China (NSFC) under grant No.U21B2017.

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

References

(1]
(2]
(3]

(10]

(11]

(12]

(13]

(14]

[15]

[16]

Megengine: A fast, scalable and easy-to-use deep learning framework.
https://github.com/MegEngine/MegEngine, 2020.

torch.compiler - PyTorch 2.1 documentation. https://pytorch.org/docs/
2.1/torch.compiler, 2023.

Byung Hoon Ahn, Jinwon Lee, Jamie Menjay Lin, Hsin-Pai Cheng,
Jilei Hou, and Hadi Esmaeilzadeh. Ordering Chaos: Memory-Aware
Scheduling of Irregularly Wired Neural Networks for Edge Devices.
MLSys, 2:44-57, 2020.

V Aho Alfred, S Lam Monica, and D Ullman Jeffrey. Compilers Princi-
ples, Techniques & Tools. pearson Education, 2007.

Olivier Beaumont, Lionel Eyraud-Dubois, and Alena Shilova. Efficient
Combination of Rematerialization and Offloading for Training DNNs.
In NIPS, volume 34, pages 23844-23857, 2021.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman.
GPT-Neo: Large Scale Autoregressive Language Modeling with Mesh-
Tensorflow, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D.
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, and Amanda Askell. Language models are few-shot learners.
NIPS, 33:1877-1901, 2020.

Jingwei Cai, Yuchen Wei, Zuotong Wu, Sen Peng, and Kaisheng Ma.
Inter-layer Scheduling Space Definition and Exploration for Tiled
Accelerators. In ISCA, pages 1-17, 2023.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,
Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze,
Carlos Guestrin, and Arvind Krishnamurthy. Tvm: An Automated
End-to-End Optimizing Compiler for Deep Learning. In OSDI, pages
578-594, 2018.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training
deep nets with sublinear memory cost, 2016.

Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau,
Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. Learning to
optimize tensor programs. NIPS, 31, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language
understanding. NAACL, pages 4171-4186, 2019.

Nolan Dey, Daria Soboleva, Faisal Al-Khateeb, Bowen Yang, Ribhu
Pathria, Hemant Khachane, Shaheer Muhammad, Zhiming, Chen,
Robert Myers, Jacob Robert Steeves, Natalia Vassilieva, Marvin Tom,
and Joel Hestness. Btlm-3b-8k: 7b parameter performance in a 3b
parameter model, 2023.

Yaoyao Ding, Ligeng Zhu, Zhihao Jia, Gennady Pekhimenko, and Song
Han. Ios: Inter-operator scheduler for cnn acceleration. MLSys, 3:167-
180, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, and Sylvain Gelly. An image is
worth 16x16 words: Transformers for image recognition at scale. ICLR,
2020.

Siyuan Feng, Bohan Hou, Hongyi Jin, Wuwei Lin, Junru Shao, Ruihang
Lai, Zihao Ye, Lianmin Zheng, Cody Hao Yu, Yong Yu, and Tianqi
Chen. TensorIR: An Abstraction for Automatic Tensorized Program
Optimization. In ASPLOS, pages 804-817, 2023.

Andreas Griewank and Andrea Walther. Algorithm 799: revolve: an
implementation of checkpointing for the reverse or adjoint mode of
computational differentiation. TOMS, 26(1):19-45, 2000.

Audrunas Gruslys, Rémi Munos, Ivo Danihelka, Marc Lanctot, and
Alex Graves. Memory-efficient backpropagation through time. NIPS,
29, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In CVPR, pages 770-778, 2016.

620

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Renze Chen et al.

Mark Hildebrand, Jawad Khan, Sanjeev Trika, Jason Lowe-Power, and
Venkatesh Akella. Autotm: Automatic tensor movement in heteroge-
neous memory systems using integer linear programming. In ASPLOS,
pages 875-890, 2020.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Prob-
abilistic Models. In NIPS, volume 33, pages 6840-6851. Curran Asso-
ciates, Inc., 2020.

Chien-Chin Huang, Gu Jin, and Jinyang Li. Swapadvisor: Pushing
deep learning beyond the gpu memory limit via smart swapping. In
ASPLOS, pages 1341-1355, 2020.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Wein-
berger. Densely Connected Convolutional Networks. In CVPR, 2018.
Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter
Abbeel, Kurt Keutzer, Ion Stoica, and Joseph E. Gonzalez. Checkmate:
Breaking the Memory Wall with Optimal Tensor Rematerialization.
MLSys, 2020.

Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei
Zaharia, and Alex Aiken. TASO: optimizing deep learning computation
with automatic generation of graph substitutions. In SOSP, pages 47—
62, 2019.

Zhihao Jia, James Thomas, Todd Warszawski, Mingyu Gao, Matei
Zaharia, and Alex Aiken. Optimizing DNN Computation with Relaxed
Graph Substitutions. MLSys, 1:27-39, 2019.

Marisa Kirisame, Steven Lyubomirsky, Altan Haan, Jennifer Brennan,
Mike He, Jared Roesch, Tianqi Chen, and Zachary Tatlock. Dynamic
Tensor Rematerialization. ICLR, 2021.

Ravi Kumar, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua
Wang. Efficient Rematerialization for Deep Networks. NIPS, 32, 2019.
Mitsuru Kusumoto, Takuya Inoue, Gentaro Watanabe, Takuya Akiba,
and Masanori Koyama. A Graph Theoretic Framework of Recompu-
tation Algorithms for Memory-Efficient Backpropagation. In NIPS,
volume 32, 2019.

Tung D. Le, Haruki Imai, Yasushi Negishi, and Kiyokuni Kawachiya.
Tflms: Large model support in tensorflow by graph rewriting, 2019.
Ao Li, Bojian Zheng, Gennady Pekhimenko, and Fan Long. Automatic
Horizontal Fusion for GPU Kernels. In CGO, 2020.

Gangmuk Lim, Jeongseob Ahn, Wencong Xiao, Youngjin Kwon, and
Myeongjae Jeon. Zico: Efficient {GPU} memory sharing for concurrent
{DNN} training. In ATC, pages 161-175, 2021.

Lingxiao Ma, Zhigiang Xie, Zhi Yang, Jilong Xue, Youshan Miao, Wei
Cui, Wenxiang Hu, Fan Yang, Lintao Zhang, and Lidong Zhou. Rammer:
Enabling Holistic Deep Learning Compiler Optimizations with {rTasks}.
In OSDI, pages 881-897, 2020.

Henry Massalin. Superoptimizer: a look at the smallest program.
ASPLOS, 15(5):122-126, 1987.

Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal, and Bin Ren.
DNNFusion: accelerating deep neural networks execution with ad-
vanced operator fusion. In PLDI, pages 883-898, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, Soumith Chintala,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox,
and R. Garnett. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In NIPS, 2019.

Shishir G. Patil, Paras Jain, Prabal Dutta, Ion Stoica, and Joseph E.
Gonzalez. POET: Training Neural Networks on Tiny Devices with
Integrated Rematerialization and Paging. In ICML, 2022.

Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang Ma, Qian Xiong,
Fan Yang, and Xuehai Qian. Capuchin: Tensor-based gpu memory
management for deep learning. In ASPLOS, pages 891-905, 2020.
Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and
Yuxiong He. Zero-infinity: Breaking the gpu memory wall for extreme

https://github.com/MegEngine/MegEngine
https://pytorch.org/docs/2.1/torch.compiler
https://pytorch.org/docs/2.1/torch.compiler

MAGIS: Memory Optimization via Coordinated Graph Transformation and Scheduling for DNN

[40

[t

[41

—

(42

—

(43

[t

[44

=

[45

—

[46

—

[47

—

(48]

[49

—

(50

—

(51]

(52

—

(53]

(54

[l

(55

[

56

—

[57

—

(58]

scale deep learning. In SC, pages 1-14, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark
Chen. Hierarchical text-conditional image generation with clip latents,
2022.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji
Ruwase, Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He.
ZeRO-Offload: Democratizing Billion-Scale Model Training. In ATC,
pages 551-564, 2021.

Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and
Stephen W. Keckler. vDNN: Virtualized deep neural networks for
scalable, memory-efficient neural network design. In MICRO, pages
1-13, 2016.

Jared Roesch, Steven Lyubomirsky, Marisa Kirisame, Logan Weber,
Josh Pollock, Luis Vega, Ziheng Jiang, Tiangi Chen, Thierry Moreau,
and Zachary Tatlock. Relay: A high-level compiler for deep learning,
2019.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser,
and Bjorn Ommer. High-Resolution Image Synthesis With Latent
Diffusion Models. In CVPR, pages 10684-10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolu-
tional networks for biomedical image segmentation. In MICCAI pages
234-241, 2015.

Amit Sabne. Xla: Compiling machine learning for peak performance.
2020.

Aashaka Shah, Chao-Yuan Wu, Jayashree Mohan, Vijay Chidambaram,
and Philipp Kraehenbuehl. Memory Optimization for Deep Networks.
In ICLR, 2022.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt
Mehlhorn, and Karsten M. Borgwardt. Weisfeiler-lehman graph ker-
nels. JMLR, 12(9), 2011.

Yining Shi, Zhi Yang, Jilong Xue, Lingxiao Ma, Yuqing Xia, Ziming
Miao, Yuxiao Guo, Fan Yang, and Lidong Zhou. Welder: Scheduling
Deep Learning Memory Access via Tile-graph. In OSDI, 2023.
Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: an inter-
mediate language and compiler for tiled neural network computations.
In MAPL, pages 10-19, 2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-
Anne Lachaux, Timothée Lacroix, Baptiste Roziére, Naman Goyal, Eric
Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023.

Matthew Treinish, Ivan Carvalho, Georgios Tsilimigkounakis, and
Nahum Sa. rustworkx: A high-performance graph library for python.
JOSS, 7(79):3968, 2022.

Jack Turner, Elliot J. Crowley, and Michael O’Boyle. Neural Architec-
ture Search as Program Transformation Exploration. ASPLOS, 2021.
Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep Baines, Carlos
Efrain Quintero Narvaez, Vinay Ramakrishnaiah, Nirmal Prajapati,
Pat McCormick, and Jamaludin Mohd-Yusof. Unity: Accelerating DNN
Training Through Joint Optimization of Algebraic Transformations
and Parallelization. In OSDI, pages 267-284, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In NIPS, pages 5998-6008, 2017.

Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma, Shizhi Tang, Liyan
Zheng, Yuanzhi Li, Kaiyuan Rong, Yuanyong Chen, and Zhihao Jia.
PET: Optimizing Tensor Programs with Partially Equivalent Transfor-
mations and Automated Corrections. In OSDI, pages 37-54, 2021.
Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuai-
wen Leon Song, Zenglin Xu, and Tim Kraska. Superneurons: dynamic
GPU memory management for training deep neural networks. In
PPoPP, pages 41-53, 2018.

Zihan Wang, Chengcheng Wan, Yuting Chen, Ziyi Lin, He Jiang, and
Lei Qiao. Hierarchical memory-constrained operator scheduling of

621

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

neural architecture search networks. In DAC, pages 493-498. Associa-
tion for Computing Machinery, July 2022.

Jian Weng, Animesh Jain, Jie Wang, Leyuan Wang, Yida Wang, and
Tony Nowatzki. UNIT: Unifying Tensorized Instruction Compilation.
In CGO, pages 77-89, 2021.

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt,
Zachary Tatlock, and Pavel Panchekha. egg: Fast and Extensible
Equality Saturation. POPL, 5:1-29, 2021.

Jiarong Xing, Leyuan Wang, Shang Zhang, Jack Chen, Ang Chen, and
Yibo Zhu. Bolt: Bridging the Gap between Auto-tuners and Hardware-
native Performance. MLSys, 4, April 2022.

Yichen Yang, Phitchaya Mangpo Phothilimtha, Yisu Remy Wang, Max
Willsey, Sudip Roy, and Jacques Pienaar. Equality Saturation for Tensor
Graph Superoptimization. MLSys, 2021.

Jie Zhao, Xiong Gao, Ruijie Xia, Zhaochuang Zhang, Deshi Chen, Lei
Chen, Renwei Zhang, Zhen Geng, Bin Cheng, and Xuefeng Jin. Apollo:
Automatic Partition-based Operator fusion through Layer by Layer
Optimization. MLSys, 4, 2022.

Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu,
Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen,
et al. Ansor: Generating high-performance tensor programs for deep
learning. In OSDI, pages 863-879, 2020.

Size Zheng, Renze Chen, Yicheng Jin, Anjiang Wei, Bingyang Wu, Xi-
uhong Li, Shengen Yan, and Yun Liang. Neoflow: A flexible framework
for enabling efficient compilation for high performance dnn training.
TPDS, 33(11):3220-3232, 2021.

Size Zheng, Renze Chen, Anjiang Wei, Yicheng Jin, Qin Han, Ligiang
Lu, Bingyang Wu, Xiuhong Li, Shengen Yan, and Yun Liang. Amos:
Enabling automatic mapping for tensor computations on spatial accel-
erators with hardware abstraction. In ISCA, pages 874-887, 2022.
Size Zheng, Siyuan Chen, Siyuan Gao, Liancheng Jia, Guangyu Sun,
Runsheng Wang, and Yun Liang. TileFlow: A Framework for Modeling
Fusion Dataflow via Tree-based Analysis. In MICRO, 2023.

Size Zheng, Siyuan Chen, and Yun Liang. Memory and Computation
Coordinated Mapping of DNNs onto Complex Heterogeneous SoC. In
DAC, pages 1-6, 2023.

Size Zheng, Siyuan Chen, Peidi Song, Renze Chen, Xiuhong Li, Shen-
gen Yan, Dahua Lin, Jingwen Leng, and Yun Liang. Chimera: An
Analytical Optimizing Framework for Effective Compute-intensive
Operators Fusion. In HPCA, pages 1113-1126, 2023.

Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and Kaiwen Sheng.
Flextensor: An automatic schedule exploration and optimization frame-
work for tensor computation on heterogeneous system. In ASPLOS,
pages 859-873, 2020.

Zhen Zheng, Xuanda Yang, Pengzhan Zhao, Guoping Long, Kai Zhu,
Feiwen Zhu, Wenyi Zhao, Xiaoyong Liu, Jun Yang, Jidong Zhai,
Shuaiwen Leon Song, and Wei Lin. AStitch: enabling a new multi-
dimensional optimization space for memory-intensive ML training
and inference on modern SIMT architectures. In ASPLOS, 2022.
Shuzhang Zhong, Meng Li, Yun Liang, Runsheng Wang, and Ru Huang.
Memory-aware Scheduling for Complex Wired Networks with Itera-
tive Graph Optimization. In ICCAD, 2023.

Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh,
and Jianming Liang. Unet++: A nested u-net architecture for medical
image segmentation. In DLMIA, pages 3-11, 2018.

Hongyu Zhu, Ruofan Wu, Yijia Diao, Shanbin Ke, Haoyu Li, Chen
Zhang, Jilong Xue, Lingxiao Ma, Yuqing Xia, Wei Cui, Fan Yang, Mao
Yang, Lidong Zhou, Asaf Cidon, and Gennady Pekhimenko. {ROLLER}:
Fast and Efficient Tensor Compilation for Deep Learning. In OSDI,
pages 233-248, 2022.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learn-
ing Transferable Architectures for Scalable Image Recognition. In
CVPR, 2018.

