
1. Motivation

2. Overview

MAGIS: Memory Optimization via Coordinated
Graph Transformation and Scheduling for DNN

Renze Chen, Zijian Ding, Size Zheng, Chengrui Zhang,
Jingwen Leng, Xuanzhe Liu, Yun Liang

Memory

Latency

Original

A-Trans

Graph Scheduling

F-Trans

Graph Scheduling

• Re-reordering: permute op
• Re-materialization:

discard, re-compute op
• Swapping: swap-in/out op

Memory↓ Latency↑

Graph Transform
Manage tensor-lifetimes Mutate graph / tensor-sizes

A B C

Add

Add

A B C

Add

Add

Interim Transform (I-Trans)

X W1 W2

MM MM

X W1 W2

MM

Concat

Slice Slice

Memory↑ Latency↓

Aggregation Transform (A-Trans)

X

MM

MM

Add

W1

W2

MM

MM

Add

W1

W2

XSlice

MM

MM

Add

Slice

Concat

Memory↓ Latency↑

Fission Transform (F-Trans)

Dual

Memory Pressure

• Large tensor-sizes
• Large hidden-size
• Large batch-size
• Long seq-length

• Long tensor-lifetimes
• Forward activation

reused in backward
• Tensor reused after

long skip-connection

Graph Transform provides additional
trade-off space for memory & latency,
enhancing the capability of Graph
Scheduling for memory optimization.

TASO Transform Rules
(A-Trans & I-Trans)

Schedule-based Rules
(Re-mat. & Swapping)

M-Rules

Fission Hierarchy Tree
Mutation Rules

D-Graph Analysis

F-Tree Construction

M-Analyzer

Incremental Scheduling

Apply Transform Rules

M-Optimizer

Initial Scheduling

If F-Tree needs update

M-State

Input Graph

Best M-State

3 6 8 11

2

4

7 9

10

1

12

13

14

0 5

Computation Graph Fission Hierarchy Tree
(F-Tree) Best Schedule (op order)

(0, 1, 2, 4, 5, 7, … , 14)

Simulation/Profile Result

Peak Mem: … Latency: …

n=1A

B D

C n=2

n=1 n=4

Simulator & Profiler

M-State
A

B C

D

MAGIS optimizes DNN memory/latency
under a latency/memory constraint.

4. M-Rules & M-Optimizer
Fission Hierarchy Tree Mutation Rules

• The Fission Hierarchy Tree serves as a record of the state of
a Graph after applying several Fission Transformations.

• We can “transform” the graph by mutating the F-Tree.

n=1

n=1

n=1
n=1

n=2

n=1

n=1

n=2
n=1

n=2

n=1

n=1

n=1
n=2

n=2

n=1

n=1

n=1
n=2

n=1

Scheduling-based Rules
• Graph scheduling is a complex multi-objective optimization

for memory & latency and is frequently invoked for every
newly transformed graphs.

• We decouple re-materialization and swapping into graph
transformation + graph scheduling with only re-ordering,
where re-ordering optimizes memory without hurting latency.

Incremental Scheduling
• We schedule new graph incrementally based on previous

schedule result and newly transformed sub-graph region.

A

X

C B

*

** *

A

X

C B

A’

*

*
* *

Re-mat. Rule

B

A

*
*

B

A

Store

Load

*

*

Swapping Rule

A

X

A’

*

* *

A

X

*

* *

De-Re-mat. Rule

A

Store

Load

*

*

A

*
*

De-Swapping Rule

n=1

n=2

n=1
n=1

n=2

n=1

n=1

n=2
n=1

n=2

Enable leaf node Disable leaf node Lift a node Change fission number

n=1

n=1

n=1
n=2

n=1

n=1

n=1

n=1
n=3

n=1

3. M-Analyzer

Fission Transformation 𝑓 = (𝑆, 𝐷, 𝑛) is defined as:

Dimension Graph (D-Graph)
• Each node represents a spatial/reduction-dim of an operator.
• Each edge represents a dim mapping between adjacent ops.
• Connected sub-graph of D-Graph represents graph-level dim.

Fission Transformation (F-Trans)

splitting sub-graph 𝑆 (of graph 𝐺) along D-Graph 𝐷 into 𝑛 partitions

Fission Hierarchy Tree (F-Tree)
• To avoid increasing graph complexity, instead of directly

rewriting graph, we record F-Trans definitions and construct
tree structure based on subgraph containment relations.

• To prevent vast search space, we analyze the “heat” (peak
memory contribution) and “score” (minimum peak memory
reduction after fission) of the subgraph dominated by every
single node to select some subgraphs to build F-Tree as the
lightweight search space for Fission Transformation.

12 13 141110 15 16

4
6

73 8 9

17

2

18 19

1

21

20

0
5

Hot-spot (node that contributes to peak mem)

2

1

0

12

13 14

11

10

15

16

4

5 6

3

8

9

17 18

19

21

20

7

(𝑆0, 𝐷, 1)

(𝑆2, 𝐷, 1)

(𝑆3, 𝐷, 1)

(𝑆4, 𝐷, 1)
(𝑆10, 𝐷, 1)12

13

11

14

10

15

16

1

4

6

18

2

5

17

8

9

21

19

20

0

3

7

𝑆0

𝑆2
𝑆10 𝑆3

𝑆4

5. Evaluation

A subgraph 𝑆 covered by a D-Graph 𝐷 Dominator tree of 𝑆

Score of the subgraph
dominated by each node

Selected subgraphs of 𝑆
for Fission Transformation

Constructed F-Tree based
on selected subgraphs

• Baselines: Torch, POFO, DTR, XLA, TVM, Torch-Inductor
• Networks: ResNet, BERT, ViT, UNet, UNet++, GPT-Neo, BTLM

Experiment Setup

Main Results
• MAGIS uses 15%~85% peak memory of baselines under the

latency overhead constraint 10% and 5%.
• MAGIS brings less than 5% (15%) latency overhead under the

memory ratio limit 80% (40%) while baselines cannot.
• MAGIS can achieve better latency & memory pareto frontier

than the naïve combination of graph transform & scheduling.

NVIDIA GeForce RTX 3090 GPU

Intel(R) Xeon(R) Silver 4210R CPUs

Code: https://github.com/pku-liang/MAGISE-mail: crz@pku.edu.cn Scan to access our code

https://github.com/pku-liang/MAGIS

