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Fission Transform (F-Trans)
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• Large tensor-sizes 
• Large hidden-size
• Large batch-size
• Long seq-length

• Long tensor-lifetimes
• Forward activation 

reused in backward
• Tensor reused after 

long skip-connection

Graph Transform provides additional 
trade-off space for memory & latency, 
enhancing the capability of Graph 
Scheduling for memory optimization.
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MAGIS optimizes DNN memory/latency 
under a latency/memory constraint.

4. M-Rules & M-Optimizer 
Fission Hierarchy Tree Mutation Rules

• The Fission Hierarchy Tree serves as a record of the state of 
a Graph after applying several Fission Transformations. 

• We can “transform” the graph by mutating the F-Tree. 
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Scheduling-based Rules
• Graph scheduling is a complex multi-objective optimization 

for memory & latency and is frequently invoked for every 
newly transformed graphs.

• We decouple re-materialization and swapping into graph 
transformation + graph scheduling with only re-ordering, 
where re-ordering optimizes memory without hurting latency.

Incremental Scheduling
• We schedule new graph incrementally based on previous 

schedule result and newly transformed sub-graph region.
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3. M-Analyzer

Fission Transformation 𝑓 = (𝑆, 𝐷, 𝑛) is defined as:

Dimension Graph (D-Graph)
• Each node represents a spatial/reduction-dim of an operator.
• Each edge represents a dim mapping between adjacent ops.
• Connected sub-graph of D-Graph represents graph-level dim.

Fission Transformation (F-Trans)

splitting sub-graph 𝑆 (of graph 𝐺) along D-Graph 𝐷 into 𝑛 partitions

Fission Hierarchy Tree (F-Tree)
• To avoid increasing graph complexity, instead of directly 

rewriting graph, we record F-Trans definitions and construct 
tree structure based on subgraph containment relations.

• To prevent vast search space, we analyze the “heat” (peak 
memory contribution) and “score” (minimum peak memory 
reduction after fission) of the subgraph dominated by every 
single node to select some subgraphs to build F-Tree as the 
lightweight search space for Fission Transformation.
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5. Evaluation

A subgraph 𝑆 covered by a D-Graph 𝐷 Dominator tree of 𝑆

Score of the subgraph 
dominated by each node

Selected subgraphs of 𝑆
for Fission Transformation

Constructed F-Tree based 
on selected subgraphs

• Baselines: Torch, POFO, DTR, XLA, TVM, Torch-Inductor
• Networks: ResNet, BERT, ViT, UNet, UNet++, GPT-Neo, BTLM

Experiment Setup

Main Results
• MAGIS uses 15%~85% peak memory of baselines under the 

latency overhead constraint 10% and 5%.
• MAGIS brings less than 5% (15%) latency overhead under the 

memory ratio limit 80% (40%) while baselines cannot.
• MAGIS can achieve better latency & memory pareto frontier 

than the naïve combination of graph transform & scheduling.

NVIDIA GeForce RTX 3090 GPU

Intel(R) Xeon(R) Silver 4210R CPUs

Code: https://github.com/pku-liang/MAGISE-mail: crz@pku.edu.cn Scan to access our code

https://github.com/pku-liang/MAGIS

