FlexHE: a Flexible Kernel Generation Framework for
Homomorphic Encryption-Based Private Inference

Jiangrui Yul2, Wenxuan Zengl’5 , Tianshi Xu®!, Renze Chen®, Yun Liang2’4, Runsheng Wang2’3’4, Ru Huang2’3’4,
Meng Li%*%
Unstitute for Artificial Intelligence & 2School of Integrated Circuits, Peking University, Beijing, China
3Institute of Electronic Design Automation, Peking University, Wuxi, China
4Beijing Advanced Innovation Center for Integrated Circuits, Beijing, China
5School of Software and Microelectronics, Peking University, Beijing, China
6School of Computer Science, Peking University, Beijing, China

Abstract

Secure two-party computation (2PC) based on homomorphic en-
cryption (HE) achieves formal data privacy protection and gets
increasing adoption for private deep neural network (DNN) in-
ference. As modern HE schemes usually operate on polynomials,
existing works rely on manually-designed HE kernels for repre-
sentative DNN operations. However, this is not only unscalable
considering the diverse operator types, shapes, polynomial orders,
etc, but also misses important optimization opportunities. In this
paper, we introduce FlexHE, a flexible kernel generation framework
to enable automatic generation and optimization of HE kernels for
2PC-based private inference. Given a high-level description of DNN
operations, FlexHE can systematically define the HE kernel design
space considering various optimization dimensions, including loop
tiling, reordering, etc. We also analyze the communication and com-
putation impact of different optimization dimensions for design
space reduction. To search for the best kernel design, a two-level
optimization problem is formulated and iteratively solved with an
integer linear programming (ILP) formulation. With extensive ex-
perimental results, we not only demonstrate a better coverage of
DNN operations including depth-wise Conv3D and dilated Conv3D,
but also achieve more than 100X, 7.9%, and 4.2 latency reduction
compared to prior-art HElayers, Cheetah, and Falcon, respectively.

Keywords: Homomorphic Encryption, Private Inference, Encoding
and Kernel Generation, Integer Linear Programming

1 Introduction

The last decade has witnessed the rapid evolution of deep learning
(DL) and its increasing adoption in privacy-sensitive applications,
including medical diagnosis [13], face recognition [30], financial
system [14], etc. Privacy has emerged as a major concern when
applying DL in these real-world applications. Therefore, there is a
growing demand for privacy-preserving DL [10, 17, 18, 23, 28].
Secure two-party computation (2PC) based on homomorphic
encryption (HE) has recently been proposed to protect data privacy

“Corresponding Author, meng li@pku.edu.cn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICCAD °24, October 27-31, 2024, New York, NY, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1077-3/24/10

https://doi.org/10.1145/3676536.3676739

with a formal privacy guarantee and has attracted a lot of attention
[12, 19-22]. The 2PC framework protects the privacy of both model
weights held by the server and the input data owned by the client.
Through the execution of a series of cryptography protocols, the
client can eventually learn the final inference results but nothing
else can be derived. Meanwhile, the server knows nothing about
the client’s input [20-22].

HE-based 2PC frameworks enjoy the benefits of better communi-
cation efficiency compared to other alternative 2PC frameworks but
face significant challenges with HE-based computation [11]. Specif-
ically, deep neural networks (DNNs) process high-dimensional ten-
sors while HE computes over polynomials, whose coefficients are
usually regarded as a one-dimensional vector. As shown in Figure 2,
the mapping from tensors to polynomials, denoted as encoding (or
packing) [12], directly determines the computation correctness and
efficiency. Therefore, a central question with HE-based 2PC frame-
works is how to design encoding algorithms for high-performance
DNN kernel generation.

Most of the existing researches [10, 11, 28] focus on developing
hand-optimized encoding algorithms, where the developers need
to manually design high-performance protocols by analyzing the
computation pattern and the trade-offs of different optimization
options. This approach, however, suffers from important drawbacks.
On the one hand, manual optimization is unscalable considering
the diverse sets of DNN operation types, shapes, HE parameters,
and system-level communication and computation capability, etc.
On the other hand, this approach is also error-prone and can miss
important optimization opportunities, leading to sub-optimal en-
coding solutions. Even though some recent works have initiated
the study of HE compilers, they primarily focus on graph-level
optimization [7] and are developed for end-to-end HE-based com-
putation [1, 15], which suffers from limited support for non-linear
activation functions and high computation overhead.

To overcome the drawbacks above, in this paper, we propose
FlexHE, a flexible encoding and kernel generation framework for
HE-based 2PC. Given a high-level description of DNN operations,
FlexHE can automatically analyze and generate the kernel design
space. We also systematically analyze different optimization dimen-
sions, including tiling, loop reordering, elements reordering, etc,
and their impact on communication and computation complexity
to reduce the design space and improve optimization convergence.
Then, a two-level optimization problem is formulated to enable
automatic encoding optimization. Our contributions can be sum-
marized as below:

https://doi.org/10.1145/3676536.3676739

Client-side

J— . Decrypt and |
-

AIwxr]

LX) ﬂ[Coefficient Encoding
N

Non-linear
ReLU

i Server-side 1X] = [00c] + (X

Figure 1. Two-party computation framework with linear and non-
linear layers. The blue dashed box represents communication la-
tency while the red one represents computation latency.

e We systematically analyze the optimization space for HE
encoding and propose FlexHE to enable flexible kernel gen-
eration and encoding optimization for DNN operators.

e We propose static analysis in the front-end of FlexHE to au-
tomatically analyze and generate the encoding optimization
space.

e We propose a two-level optimization formulation in the back
end of FlexHE to optimize for the total latency efficiently.

o Compared to prior-art baselines, including HElayers[1], Chee-
tah [11], and Falcon [28], we not only realize a much better
DNN operator coverage but also achieve more than 100X,
7.9%, and 4.2x latency reduction respectively.

2 Background
2.1 Threat Model

We focus on efficient privacy-preserving DNN inference, which
involves two parties, i.e., the server and the client. The client ini-
tially holds private data, while the server holds a model. We assume
the attackers to be semi-honest and hence, they will follow the
predefined protocols but attempt to learn more information than
permitted. Following [10, 11, 21, 22, 28], we assume that the model
architecture, including the number and types of layers, their di-
mensions, and bit widths, are openly known to both the server and
the client. 2PC ensures that by the end of the inference process,
the client is only allowed to learn the model’s architecture and
inference result while the server gains no information about the
client’s input.

2.2 Notations

In this paper, we use [N] to denote the set {0,1,2,.., N — 1}, bold
upper-case letters such as W to represent multi-dimensional ten-
sors, lower-case bold letters like m to represent vectors, and m|j]
to denote the j-th element of the vector m. We use lower-case let-
ters with “hat” such as p to represent a polynomial, and p[j] to
denote the jth coefficient of the polynomial p. We denote by @ -b the
multiplication of two polynomials. For a power-of-two number N
and g > 0, we write Ay, 4 to denote the set of integer polynomials
Ang =Z¢[X]/(X N 1 1). We denote [M]| as the HE ciphertexts on
tensor M.

2.3 HE-based 2PC Framework

We review the strengths and basic flow of the 2PC framework.
2PC frameworks that combine arithmetic sharing (ArSS) and HE
has been widely studied in [10-12] due to their high flexibility
and high accuracy when supporting different non-linear activation
functions [9, 16]. Compared to the end-to-end FHE framework,
the 2PC framework has higher accuracy due to the 2PC’s ability

to realize accurate non-linear functions, while FHE requires poly-
nomial approximation, which suffers from prohibitively accuracy
degradation [8]. Although some HE schemes, such as TFHE [6],
can implement arbitrary functions, they still suffer from low com-
putational efficiency [25]. Moreover, when combined with other
FHE schemes like CKKS [5], switching between schemes incurs
a large accuracy drop [3]. What’s more, the 2PC framework can
repack the ciphertext during computation, thereby eliminating the
need for expensive bootstrapping operations. Thus, we focus on
the 2PC framework in this paper.

As described in Section 1, the computation of DNNs requires en-
coding to convert high-dimensional tensors into one-dimensional
coeflicient vectors. To achieve this, there are two widely used en-
coding schemes, including SIMD [12] and coefficient encoding
[10, 23, 28]. SIMD encoding allows element-wise addition, multipli-
cations, and rotations on encrypted vectors. However, this encoding
scheme incurs large computation overhead to compute multiply-
and-accumulate operations, which requires many expensive rota-
tion operations. On the other hand, coefficient encoding puts ele-
ments in plaintext polynomial coefficients directly, thus allowing
element-wise addition and convolution between two vectors. Note
convolution can be used to implement multiply-and-accumulate
efficiently. Moreover, SIMD encoding restricts plaintext modulus to
2kN + 1 where k is an integer and N is the polynomial degree. Co-
efficient encoding allows for a larger set of plaintext modulus like
power-of-2, which benefits the non-linear functions implemented
by 2PC [11]. Therefore, the coefficient encoding scheme is usually
much more computation-efficient compared to SIMD encoding for
DNN operators [10, 11] and is the focus of our work.

As illustrated in Figure 1, each intermediate activation tensor
is additively shared between the server and the client as (X). and
(X)s, respectively, with X = (X). + (X)s. Both the server and the
client encode their inputs into plaintext polynomials following a
pre-determined protocol. The client then encrypts its plaintext to
generate [(X)c] and sends it to the server. After receiving the
client’s share, the server reconstructs X as [X] = [(X)c] + (X)s-
The server then homomorphically computes W [X] — R, obtaining
[Y]. = [WX - R], where R is a randomly generated mask. Finally,
[Y], is sent back to the client as the client’s share, and the server
sets (Y)s = R as the server’s share.

From the discussion above, it is clear that the total latency of the
linear layer consists of two parts: computation and communica-
tion. The computation latency is the time to perform homomorphic
computations, while communication latency is the time to send the
secret shares. Different encoding methods affect these two parts
differently, resulting in different efficiency.

2.4 Related Works

As shown in Table 1, previous works on HE kernel generation
mainly fall into the following two categories.

Hand-optimized encoding algorithms Hand-optimized coeffi-
cient encoding methods are currently the primary means to achieve
correct and efficient encoding. For instance, Cheetah [11] proposes
an efficient encoding algorithm for 2D convolutions (Conv2D),
while Iron [10] and Falcon [28] further optimize general matrix
multiplications (GEMM) and depth-wise Conv2D (DEP). Although
these methods achieve good performance, they usually rely on
fixed encoding rules and optimize in a relatively small space, like
the number of channels packed within one polynomial. Through

Table 1. Qualitative comparison with previous works. “Comm.”
means “‘Communication”, “Mem.” means “Memory”, and “Lat”
means “Latency”.

Hand-optimized SIMD-compiler FlexHE
Methods [10, 1pl, 28] [1,7] ’ (ours)
Encoding method Coefficient SIMD Coefficient
Framework HE-based 2PC End-to-end FHE HE-based 2PC
GEMM [10] GEMM Any conform to
Supported Kernels Conv2D [11] Conv2D Section 4.2
DEP [28] MatMul :
Optization Target | Minimize Comm. | Minimize Mem./ Lat. | Minimize Lat.
Kernel Generation X v v
(;:ptl'zatlon for X X v
nvironment

our evaluation, under different communication and computation
environments, these works may be suboptimal. Moreover, hand-
optimized encoding algorithms are error-prone and labor-intensive,
making it hard to introduce new operators.

SIMD-encoding based compiler This category includes SIMD-
encoding based compilers such as CHET [7], HElayers [1], etc.
These compilers focus on end-to-end FHE frameworks with SIMD
encoding and mainly optimize for noise growth, the number of
bootstrapping, etc., which is not the bottleneck in a 2PC frame-
work. Moreover, they only support limited operators like GEMM
and Conv2D. Our work, however, focuses on the HE-based 2PC
framework with coefficient encoding, which faces different chal-
lenges, and we hope to support a much wider range of operators.
Therefore, a framework capable of automatically generating and
optimizing encoding methods is needed.

3 Motivations

Motivation 1 Since HE requires encoding tensors into polyno-
mial coefficients and only supports polynomial-level arithmetic,
manually generating encoding algorithms can be error-prone and
labor-intensive due to the big gap between tensor operations and
polynomial multiplications. Thus, correctness is the first aspect we
need to focus on.

We use a simple example of GEMM in Figure 2 to illustrate.

As can be observed, we pack X and W into x and w, and this
encoding allows the results to be extracted in certain coefficients
of the resulting polynomial. However, as shown at the bottom of
Figure 2, if we slightly modify the encoding of elements X[1, 0] and
X[1, 1], the final results get corrupted.
Motivation 2 Besides the correctness aspect, optimization is even
harder considering various DNN operators, numerous encoding
methods, and varied computation and communication conditions.
We give two examples to show this aspect as follows.

First, different encoding methods lead to different performance. In
Figure 3(a), we use three different encoding methods to encode
Conv2D and choose three different input shapes under the same
environment 4CPU+WAN for illustration. Different encodings have
varied numbers of input and output channels in one polynomial.
While the difference is small, their performance impact is noticeable.

Second, different computation and communication environments
further add complexity. In Figure 3(b), we compare three different
environments combined with the above three encodings and apply
them to C2. As can be observed, for these three environments, the
optimal computation and communication latency are achieved by
different encoding schemes.

f (a) Toy Example of GEMM)

1 2 5 6 1 2] [5 6] _[19 22
X:[a 4} WZ{? 8} X'W:[z 4}'[7 8}_{43 50]
A 4
p

Reverse Enough Space (b) Coefficient Encoding\

]
7i(X) = X = 1ot + 22° + 325 + 422
Coefficient Extraction |

(W) = W = 52° + 72" + 622 + 82° o S
\Y/ =X -W =10+ 192 + 192> + 22z% + 282* + 432° + 452° + 5027 + 243:8]

p
mi(X) = X = 1zt + 220 4 32* + 40°
T (W) — W =520 + 7! + 622 + 825 | Overlapping!

\? =X - W =10 + 192 + 1922 + 422° + 51z* + 452° + 5020 + 242")

() Possible Flaw (Motivation 1) |

Figure 2. Toy example of GEMM with coefficient encoding and
the possible flaw. (a) Multiplication of matrix X and W. (b) Packing
of GEMM. W is packed in column-major order and X is packed in
row-major order reversely; each row is left enough space to avoid
overlapping. (c) Possible flaws for coefficient packing. The space
between two rows of X is not enough, resulting in overlapping
with dummy elements. The “42” in red color should be “22”, but
gets corrupted by 4x> + 5x° after shortening the spacing.

[Cheetah [__J1Iron [Packing-C
— 650

7 400 Z 400
z £
2350 [1y g 2 ss0
g £ 300 E>
& -1 E [
= 300 - H
= £ 200 B £ 450
2 £ 3
g 250 Z =
s 2,

£ 200 H 100 &350
S £

oL o — — o L

c1 @ c3 c1 © c3 c1 [c3
(a) Influence of encoding methods
700 = — — 700

2 | £ —
% 600 Z20 600
2500 E E 500
g £ 150 4
& 400 4 £ 400
£ 300 £ 100 2300
g £ z
Z 200 H £ 200
£ E 50 =
& 100 H 100

o LI O M=] || o LI

ICPU 4CPU FPGA ICPU 4CPU FPGA ICPU 4CPU FPGA
(LAN) (WAN) (WAN) (LAN) (WAN) (WAN) (LAN) (WAN) (WAN)

(b) Influence of environments

Figure 3. Efficiency differences among various (a) encoding meth-
ods and (b) environments. Cheetah [11] packs as many input chan-
nels as possible in one polynomial. Iron [10] guarantees the ratio of
output and input channels in one polynomial equals the plaintext
conv. Packing C always packs two input channels in one polyno-
mial. C1, C2, and C3 represent input shapes of (28, 128, 128), (14,
256, 256), (7, 256, 512) in the order of (H/W, C, K).

From the above examples, it is clear that generating new encod-
ing methods correctly and optimizing them presents huge chal-
lenges for developers. Inspired by these motivations, in this paper,
we propose to use an automatic kernel generation framework to
generate correct and optimized encoding methods for efficient 2PC-
based private inference. We summarize the challenges of designing
such a kernel generation framework as follows:

Challenge 1 The search space for encoding is extremely large, yet
the correct encoding takes up only a small fraction of this space.

X W (0]
1‘2‘3‘4‘5‘@‘1‘2 3‘:‘14‘20‘26
Encode
= 7m,(X) = 12° + 221 + 322 + 4a® + 52t Encode
Tw(W) = 320 + 22 + 122

2

>

& - = 32 + 8z + 142% + 2023 + 262" 4 142° + 528

S8
Il

Figure 4. Example of Conv1D encoding.

Therefore, we must prune the search space to those where most
encoding methods are correct.

Challenge 2 The variety of encoding primitives, parameters, and
environmental settings makes the optimization space still very
large and hard to explore. Thus, we need to find an efficient way to
improve the exploration efficiency.

Corresponding to these two challenges, we first give a detailed
analysis of coefficient encoding and then formulate the optimization
space where most encodings are correct in Section 4. In Section 5,
we introduce our kernel generation framework based on previous
analysis and formulate the problem as a two-level optimization
process to solve it more efficiently.

4 Analytical Modeling

Due to the extremely large encoding space, and the huge portion of
incorrect encodings, it is impossible to search in this space. There-
fore, in this section, we first give a detailed analysis of coefficient en-
coding (Section 4.1) to show its ability to support multi-dimensional
convolutions, and then show how to prune the encoding space into
a subspace where most encodings are correct (Section 4.2).

We use the Einstein summation convention to represent tensor
computation for ease of illustration. The subscripts that appear on
the right side but don’t appear on the left side indicate reduction.
For example, one-dimensional convolution (Conv1D) is denoted as
0; = X;4 W) Where o, x and w are vectors.

4.1 Analysis for Coefficient Encoding

To identify the correct encoding methods, we need to first derive
the functionalities provided by coefficient encoding. We start with a
simple example, i.e., ConvlD. We observe that polynomial multipli-
cation performs negacyclic convolution between their coefficients.
Thus to perform Conv1D between two input vectors x and w with
coefficient encoding, we can simply encode one vector in the poly-
nomial as its original sequence and encode another in reverse order.
We now give the definitions of the encoding 7y (x) : Zy 1 ANp

and 7,,(W) : ZII;IZ — AnN,p and assume N1Np < N for simplicity.

1=x[il, 1

X = my (x) where xX[i
w = 1y, (W) where w[k] = w[N2 — k],

where i € [N1], k € [N2] and all other coefficients of * and w are
set to 0. The polynomial multiplication 6 = X * w directly gives the
result of one-dimensional convolution in certain coefficients. We
present a simple example in Figure 4.

Proposition 4.1. Given two vectors x and w, we encode them into
polynomials X = mx(x) and w = (W) as Equation (1) shows,
then the convolution between two vectors o = ConviD(x, w) can be
computed via the polynomial product 6 = £ - w over ring AN p.

3 w o
12 37|47

X[[2]s]e]sTef7]s]] RN R ey el P =
® /7 9
W “u“w\[1|zl3|4|5l5|7|s[9] Flatten
®
Ofzlelxlale] DEDBn
I
(a) Dilated Conv1D

Figure 5. Example of the computation process of (a) Conv2D and
(b) dilated Conv1D.

1

X
2
5
8

(b) Conv2D

Then, we observe that for a strided convolution, such as o; =
Xoi+k * W, it could be handled as a regular convolution and then
only pick the relevant elements. Similarly, for dilated convolution
like 0; = X;, 9% * Wi, we insert zeros between the weight elements
as shown in Figure 5 (a).

We observe that multi-dimensional convolution (ConvND) can
be converted into Conv1D. Given two tensors X and W, ConvND
can be computed as Ojy jj,....i,, = Xi, +kyig+ka,...in+kn Wik, hen- I
we flatten X as a vector directly, and flatten W as a vector with a
proper number of zeros inserted between its elements, the ConvND
can be computed by the Conv1D of the flattened vectors. We now
define the flattening function: x = Fy(X) : ZngNzx'“XN" — Zg’

where Ny = II;N; and w = F,,(W) : Z?,/IIXMZX'“XM" - Zfﬂwt where
M; =T1;M;. Here we assume M; < N; for simplicity.

x[i1 % N # ... * Np + ... + ip] = X[i1, i2, ..., in] (2)
W[]] * Nz * ..k Nn + ... +jn] = W[j],jz, vens jn],

where all other coefficients are set to zero. The Conv1D of x and
w directly gives the multi-dimensional convolution in some of its
elements. We present an example in Figure 5(b) and omit the formal
proof due to space limit.

Proposition 4.2. Given two multi-dimensional tensors X and W,
the multi-dimensional convolution between the two tensors can be
evaluated by the one-dimensional convolution between x = Fy(X)
andw = F,,(W) as Equation (2) shows.

Remark From the above analysis, we observe that coefficient en-
coding provides functionalities of multi-dimensional convolution
with arbitrary strides and dilations between tensors. This makes it
suitable for deep learning operations as ConvND performs multiply-
and-accumulate operations in nature and thus eliminates the need
for the expensive rotation used in SIMD encoding for accumulation.

4.2 Analysis for DL Operators

Based on functionalities provided by coefficient encodings, in this
section, we want to show most DL operators can be decomposed to
several ConvNDs between the slice of X and the slice of W. From
proposition 4.2, the encoding of each slice can then be analytically
determined, and thus each slice can be treated as a whole block.
Therefore, the whole encoding space is pruned to a subspace where
the encoding of each slice is guaranteed to be correct and we only
need to optimize the arrangements of these blocks, leading to much
better optimization efficiency.

We represent tensor computations as O = op(X, W), where
X is the activation tensor, W is the weight tensor, and O is the
output tensor. We categorize the indices in tensor operations into

X A [e) Encode

1 2 3 1 1 _ 3 5
6 §® 2 2 é— 18 22

Encode 4 5
Sp0=0 R.0=0 S,9=3 Ryo=1 mod z'% 41
&, 1a%4 2" +32° | 4 450t 160 |
g =120 + 22 + 322 + 42® + 52t + 62°
Sw0=0 Ryo=0 Su1 =T Ry1=1
w OI 12° + 12! | I 27 + 228 | | 15
T = 12° + 12 + 022 + 02% + 02 + 02 + 02 + 227 + 22° x

0
20

12° + 32" +52% + 7a® | 92* +11a° + 62°

227 + 62° + 1027 | 142" + 182" + 2202 + 12213

dummy dummy
6= 12"+ 32" + 522 + 723 4 92* + 112° + 625 + 227 + 62°
+102° + 1420 + 182" + 222'2 + 12218

Figure 6. Example of depth-wise Conv1D encoding. Each channel
of X is considered as a whole block and encoded consecutively into
the polynomial. Each channel of W is considered as a whole block
and is encoded with enough spacing. Elements inside the block are
encoded reversely based on proposition 4.1.

four groups — m, i, j, and k — based on the tensor they appear in.
Specifically, the index m appears in all three tensors, i appears in
X, O, j appears in O, W, and k appears in X, W. We still adopt
the Einstein summation convention as mentioned in Section 4.1.
For instance, depth-wise convolution can be written as O, i, i, =
Ximy vtk itk Wy ey ko

We observe that for most DL operations, there are two situations:
1) the indices appear individually in each dimension, including
GEMM (0;,,j, = Xy, k, Wi, j,), where each dimension has only one
indice, and matrix-vector multiplication (GEMV). 2) some dimen-
sions have linear combinations of i or j with k, including Conv1D
(i1 = Xj,+k, W,), where i1 and k1 appear in the first dim in X, Con-
vND ,dilated Conv, and Group Conv. All the above computations
can be generated with our proposed framework. We now show that
if a certain computation can be represented in the above format,
then, it can be decomposed into several ConvND kernels.

We start from a simplified scenario that only involves indices
iand k, e.g., Oi i, = Xg,4iy kytiy ks Wy kyks- FOllowing Proposi-
tion 4.2, it can be naturally mapped to a ConvND operation be-
tween X and W. When the computation further involves indices
m and j, e.g., a depth-wise Conv (Om,,i; = Xy, i,+k; Wy k,)» @S
shown in Figure 6, for each specific value of my, e.g., m; = 0, the
computation becomes Og ;, = X ;, +k, W k, » Which is the simplified
scenario. This indicates we can regard the complex computation as a
combination of simplified scenarios. Therefore, we can first encode
each slice as separately a block and then, combine them together.
Note we need to leave enough space to guarantee different slices
are not interfering each other.

From the above discussion, each slice of X indexed by m and
each slice of W indexed by m and j is encoded as a whole block.
Thus, we only need to determine the arrangements of each block,
including the sequence of blocks, denoted as Ry, and Ry, m, j for X
indexed by m and W indexed by m, j respectively, and the “starting
position”, i.e. the slots with the lowest degree that this block takes
up. We use the sequence of a block to index its starting position
and denote as Sy, ,, and Sy, R respectively. An example is
provided in Figure 6.

Remark From the above analysis, we derive that for most DNN
operators, their computation can be decomposed to several Con-
vNDs between their slices, and thus the correct encoding of each

w,m,j

Generated Program

(User-deﬁned Tensor Computation)

1 = PN
~ < [H]
Front-end Analysis Final Encoding

® o)
Information @ Prunning Based Performance ﬁ ILP Problem
Extraction on HE Evalutation Formulation

Generated ® Exploration
Optimization Space) k
Front-end Back-end

Figure 7. Overview of proposed FlexHE workflow.

slice is given in proposition 4.2 analytically and only the arrange-
ments, i.e. the sequence and starting position of each slice remain
undetermined.

5 Framework Design of FlexHE
5.1 Overview

Figure 7 illustrates the overall workflow of FlexHE. Users first de-
fine the tensor computations in mathematical forms using Python,
and then register them as optimization tasks within FlexHE (D).
The workflow of FlexHE can be divided into two parts: front-end
analysis (Section 5.2) and back-end optimization (Section 5.3). The
front-end analysis first extracts useful information, e.g., the number
of indices and the category of each indices from the user input, and
then aggregates the information to generate an optimization space
based on Section 4 (). The back-end search engine systematically
explores the entire space to identify the most efficient encoding
method (3 and @). We formulate the search as a two-level op-
timization problem with the inner loop optimization formulated
as an integer linear programming (ILP) problem. FlexHE lever-
ages analytical cost modeling to evaluate each sample to improve
search efficiency. Finally, based on the optimized encoding solution,
FlexHE generates the low-level program ().

5.2 Front-end Analysis

To derive the encoding method, we need to characterize tensor
computations first. Therefore, FlexHE initially extracts useful in-
formation from the input program, including each indice with its
range and the category of each index (i.e. in which tensor it ap-
pears). Figure 8(a) and (b) presents an example using depth-wise
Conv1D.

Then, FlexHE generates the optimization space with the ex-
tracted information and some encoding primitives, including tiling,
loop reordering, and elements reordering. Tiling primitive tiles the
range of each indice into a smaller one such that the subtensor fits
into the single polynomial. Loop reordering primitive changes the
order of the indices, and thus influences the final encoding. Ele-
ments reordering primitive reorders the sequence of the elements
encoded into the polynomial. We also observe that, though there
are many other primitives like loop unrolling, they do not affect
the encoding and, thus, are not considered.

The optimization space is then generated by systematically enu-
merating these primitives in a specific order. Each point in the
optimization space is encoded using a vector, and each value in
the vector represents a specific choice of encoding primitive or
parameter. Figure 8(c) and (d) shows an example of the encoding
primitives and a possible point in the optimization space.

for(m=0; m<2; m++) (a)) (indices: [m, i, k] (b)\
for (i=0; i<2; i++) range: [2,2,2]
for(k=0; k<2; k++) category: [0,1,3]

O[m,i] += X[m,i+k]*W[m, k] original order: [0,1,2] Y,
tile: m - [m1, m2] © @)
tile: i -> [i1, iz] tile: [2, 2, 2]
tile: k -> [k1, k2] loop reordering: [0,1,2]

loop reordering: m2, i2, k2, mi,ku, ji elements reordering m: [[0, 1], [1, o]]
element reordering: None)

for(m2=0; m2<1; m2++) (e)
for (i2=0; i2<1; i2++)
for(k2=0; k2<1; k2++) // below d by poly ial multplication
for(mi=o0; mi<2; m1++)
for (i1=0; i1<2; i1++)
for(ki=0; ki<2; k1++)
O[m2*2+mu,iz*2+i1] += X[m2*2+mu,iz*2+ir+k2*2+ki]*W[m2*2+mu, k2*2-+ki]

Figure 8. Depth-wise Conv1D example for information extraction.
(a) User input program. (b) Extracted information, including the
range of three indices, the category they belong to (0 for m, 1 for
i, 2 for j, and 3 for k), and the original order of the loops (m, i, k
represented by 0, 1, 2). (c) One possible encoding primitive. Three
loops are all tiled to two levels; the outer loop and inner loop are
all kept in the original sequence. Elements along m indice can be
reordered. (d) Vectorization of the encoding primitives in (c). There
are in total three indices m, i, and j in the user program. The tiling
for each index is 2, 2, 2, which represents the range of the indices in
inner loops (m1, i1, k1), and results in only one tile, i.e. the original
tensor. Inner loops are kept in the original sequence. The m1 indice
can be permuted, including two permutations [0, 1] and [1, 0]. (e)
Diagram to show the loop structure after applying the encoding
primitives. Inner loops (i1, j1, k1) are computed through polynomial
multiplication.

Iteratively Sample Another Encoding Primitive 6

i‘ 01 Legal? |
— Sample an Encoding Most Compact Encoding Performance
Primitive 6, Solving and Legality Verification Estimation
Step 1 Step 2 1 Step 3

Figure 9. Diagram for exploration steps.

To enable efficient exploration of the huge optimization space,
we propose to prune the points that are less likely to generate a
good packing method. Here, we consider the following strategies:

1) Limit the depth of loop tiling to two: the polynomial abstrac-
tion divides the whole problem into two levels, the inner one
represents polynomial multiplication while the outer one
represents addition between different resultant polynomials;

2) limit the number of loop reordering: loop reordering for
the outer loop does not affect the encoding. Though it may
influence the data movement between cache and memory;, it
is hardware primitive and is not the focus of our paper;

3) limit the number of element reordering: we choose not to re-
order the j index since it does not influence the performance
and we only permute the m index.

5.3 Back-end Optimization

During the back-end optimization, FlexHE explores the optimiza-
tion space to minimize total latency. The optimization target is
formulated as

min. Total_Latency(6s, 62), (3)

Table 2. Variables of encodings.

Notation Description
Ly, Lyy Block length
Ry,m» Rw,m, j Sequence for each block
Sx,a»Sw,a | Starting position for block with sequence a
Ny, N,y Total number of blocks
N Degree of polynomial

where 0; represents the encoding primitives including tiles, loop
reordering, and elements reordering in Figure 8(d) and 0, repre-
sents the encoding of one polynomial listed in Table 2. For a specific
encoding primitive, there exist many different encodings. Consid-
ering the polynomial length, some encodings will make the result
exceed the polynomial length, which wraps around and corrupts
the results and is thus illegal. Therefore, we need to verify, for a
specific encoding primitive, if the most compact encoding is legal.
We first sample an encoding primitive 0;; find the most compact
encoding under this primitive, and check if it is legal. The search
process is then formulated as a two-level optimization problem
with the outer one optimizing encoding primitives while the inner
one finds the most compact encoding and verifies if it is legal.
Exploration process As shown in Figure 9, the exploration process
begins with selecting 6 in the optimization space. This point is
then used to establish the specific ILP problem (detailed in the
next section) to find the most compact encoding. An ILP solver is
then employed to solve this problem and check if it is legal. Upon
solving, we acquire the exact encoding method. If the most compact
encoding is legal, then an analytical estimator is used to derive the
estimated cost under this encoding primitives. Otherwise, we would
set the Latency as infinity. Afterward, we sample another point
and iteratively optimize for the optimized encodings. We exploit a
Bayesian optimization method supported by [2] to search for the
optimal latency.

The analytical modeling is given as follows without proof due
to limited space. The communication latency is estimated as:

Nm N;i N + N Nm N;i Nj
Tiley, Tile; Tile "™ Tiley, Tile; Tile;

(Hmik)fcomm’
where Ny, Nj, Nj, Nj is the range of each indices and Tile,, Tile;,
Tilej, Tiley represents the tiling of each indice. £eomm represents
the communication cost of one single polynomial. The computation
is estimated as
I Ni Nj N, N
ijmk Tile; Tilej Tiley, Tiley

Leomp,

where £comp represents the computation cost of one single polyno-
mial multiplication. An example is given in Figure 10.

ILP problem formulation We then illustrate how to find the most
compact encoding with an example in Figure 10. The encoding
primitive is given in Figure 8(d).

We show the optimization procedure in Figure 10. All the vari-
ables are listed in Table 2. We first sample a sequence for the blocks.
As changing the sequence of X blocks is equivalent to changing the
sequence of W blocks, we only permute W blocks. Then, to find
the most compact encoding, we minimize the slots taken up by the
encodings as shown in Figure 10 ().

min. Sy N —1+SwN,,—1+Lx + L. 4)

X W Encode

1
Encode 4 5 6
<9:.n m=0 Sa, m=1

T HERE

L,=3
£ = 12550 4 9gSe0+] | 3550042 | gpSan 4 pSaatl y gpSeat?
Swo m=0 Sw1 m=1

2] 271 -]

<5

) Oyt Ly 1=7

Sr.n'+ Suw.0 S0+ Swo + Ly + Ly Sea + :s’,,‘,‘. + L+ Ly
[t]s]2a]o[u]es
a effective @ dummy
. . . Se0it Swa SeaHSwa Sy + Swit Ly + Ly
0=12 -w 2] e [w|u][s][2]n
dummy [©)] effective @ ®

Optimization Target Optimization Constraints

® min(Sy1 + Swi + Ls + L) D S82,0=0,800=0

Satisfaction @ Se,0 + Sw,0 + Lz + Ly < Se o+ S
@) S0+ Swi > Sz1 + Swo+ Lo+ Ly

Communication Cost 2 lcomn Computation Cost 1 lcomp

Figure 10. Examples for depth-wise Conv1D optimization. There
are two blocks for X and W indexed by m, marked with blue block
and yellow block, respectively. Polynomial multiplication convolves
every block in x with W and results in an effective part that con-
tains elements of O (convolved with the block with the same m)
and a dummy part (convolved with the block with different m). The
optimization target minimizes the total slots in the resulting poly-
nomial (). Constraint (2) avoids overlapping between the blue
effective block with the second result block. Constraint (3) avoids
overlapping between the green effective block with the first block.
The communication cost in this case is 2 - £comm, including 1 input
polynomial and 1 output polynomial. The computation cost in this
case is 1 - £comp, which corresponds to 1 polynomial multiplication.

Without loss of generality, let the first block of activation and
weight start from 0, i.e. Sxo = 0 and S,,0 = 0. A polynomial
multiplication convolves every activation tensor block with the
weight tensor block, producing an output block with length N -
Ly +L.w —1(e.g, 2Ly + Ly, — 1in Figure 10) and a starting position
SW,Rw,m,j +5x,0 (€.8., Sw,0+Sx,0 and Sy, 1+Sx,0 in Figure 10). However,
not all the elements in a block are useful. Only the part that is
the result between blocks with the same m indices is effective and
contains needed results in its coefficient, whose length is Ly +L,, —1
and starts from Sy, R, - + Sx,R,.,,,- For simplicity, we omit the —1
in the block length as it is usually far larger than 1.

To derive a correct packing, we need enough spacing to avoid
overlapping between blocks. First, we need to ensure the effective
block does not overlap with the block behind it in Figure 10 ((2)).

Sx,Rx)m + Sw,Rw,m,j + Ly + Ly < Sxo+ Sw,Rw)m,jH Vm,j. (5

Second, we need to ensure the effective block doesn’t overlap
with the block in front of it as shown in Figure 10 ().

Sx,RX»m + Sw,Rw‘m,j = Sx,Nx—l + SW,vam’j—l +Lx+L, Vm,j.
Finally, we check if the result can be fit into one polynomial ().
Sx,Ny—1+ Sw,N,,—1 + Lx + Ly < N. (6)

Afterward, we sample another sequence for W and keep iterating
until all sequences are touched or correct encoding is found.

6 Experimental Results
6.1 Experiment Setups

FlexHE is built on the top of the SEAL library [24], EMP toolkit [26],
EzPC framework [4], and OpenCheetah [23] in C++. Consistent
with [19, 21-23], we simulate a network setting via Linux Traffic
Control. The bandwidth is set to 384MBps for LAN and 44MBps for
WAN. The round-trip latency is about 0.3ms for LAN and 40ms for WAN.
All the experiments are evaluated on an Intel Xeon CPU@2.2 GHz
with 256GB RAM. We evaluate FlexHE on a variety of tensor com-
putations, including matrix-vector multiply (GEMV), matrix-matrix
multiply (GEMM), N-dimensional convolution (ConvND), depth-
wise convolution (DEP), dilated convolution (DIL), and transposed
N-dimensional convolution (TND). In our experiments, we use two
environments, i.e., 1CPU+LAN and 4CPU+WAN as the computation-
bound and communication-bound situations, respectively.

6.2 Micro-benckmark Evaluation

We compare the performance of FlexHE with both hand-optimized
encodings, including Iron [10], Cheetah [11], Falcon [28], and SIMD
compiler HElayers [1] for 11 different common operators. HElayers
and hand-optimized encodings both lack support for Conv3D, DIL,
T1D, T2D, and T3D, so we implement them based on Conv2D.
Results and analysis From Figure 11, we have the following obser-
vations: 1) FlexHE outperforms HElayers in all benchmarks under
two environments. FlexHE achieves 19.9~288.8x speedup under
1CPU+LAN and 1.1~185.2X speedup under 4CPU+WAN. We believe
the reasons for such significant speedups are due to the huge ex-
ploration space, unified optimization for environments, and the
rotation-free advantage of coefficient encoding. 2) FlexHE achieves
comparable and even higher performance over hand-optimized en-
codings on almost all benchmarks and achieves noticeably higher
speedups on Conv3D, GRP, and T3D. FlexHE achieves 1.5~1.7X
speedup under 1CPU+LAN and 1.4~1.5X speedup under 4CPU+WAN;
3) we also notice that FlexHE is unable to optimize for GEMM. The
reason is that the selected test case is too lightweight such that
the estimated computation latency is largely disturbed by other
costs like thread launch time. We verify that the estimated cost of
Iron encoding is indeed larger using our analytical estimator. How-
ever, even disturbed by inaccurate estimation, FlexHE still achieves
comparable performance.

6.3 Evaluation for New Operators

We evaluate FlexHE on two uncommon operators under 4CPU+WAN,
i.e., dilated Conv3D [27] (abbreviated as DiC3D) and depth-wise
Conv3D [29] (abbreviated as DpC3D), which lack library support.
We compare these two operators against the hand-implemented
operators using the Conv2D kernel provided by hand-optimized
encodings and HElayers.

Results and analysis As shown in Figure 12, we make the follow-
ing conclusions: 1) For DiC3D, FlexHE achieves 1.4~7.8X speedup
compared to Cheetah and 168.7~435.7x speedup compared to HElay-
ers; 2) For DpC3D, FlexHE achieves 1.49~4.17x speedup compared
to Falcon and 5.69~15.26x speedup compared to HElayers.

6.4 End-to-end Evaluation

We perform the end-to-end evaluation of ResNet-50 on the Imagenet
dataset against Cheetah and HElayers. Since the 1x1 kernel is not

1 CPU (LAN) [HElayers [Hand-optimized methods ~ [EE] FlexHE (ours)
1 —| — = = — = —
g 5 g g s 7
) = S S =
5 = L 5 : B E ' |
Q = O S e 5 = 5 s
= £ £ 2 = = =
2 0.01 | = S o —i S)
ke = o B [1] =
= GEMV GEMM ConviD Conv2D Conv3D GRP DEP DIL T1D T2D T3D
]
-% 4 CPU (WAN)
1 — — — = 1 — = =] — = — 1
£ g i S
= S = = g = <=
S = = £ 2 o = 8
Z ol 2 5 & 3 E 2 4
@] D = 5} O ©
5] = 5]
0.01 4 =
GEMV GEMM ConviD Conv2D Conv3D GRP DEP DIL T1D T2D T3D
Operators
Figure 11. Micro-benchmark with HElayers and hand-optimized methods on different operators under different environments.
Dilated Conv3D [HElayers] Hand-optimized methods I FlexHE (ours) Table 3. End-to-end evaluation on ResNet-50.
1
0. ;
y ! R . Environment Method End-to-end Lat. (s) Comm. (MB)
£ oo Chosian HElayers 683.96 627.80
j ®.5.8.128) (16, 16, 16, 64) @2,32.32,32) 4CPU+WAN Cheetah 132.03 1312.1
S b . U e FlexHE (ours) 110.71 539.65
= epth-wise Conv3D
E 1 — 7 HElayers 3032.1 627.80
> Falcon Faloon 1CPU+LAN Cheetah 300.05 1312.1
FlexHE (ours) 271.94 539.65
0.1 Falcon
’ S
8,8,8,128) (16, 16, 16, 64) (32,32,32,32) led (a) Conv3D le3 (b) GRP
Input Dimension o200 5 200
E s E 175
Z 150 E 15.0
Figure 12. Benchmark with HElayers and hand-optimized methods gus g 125
on dilated Conv3D and depth-wise Conv3D. g 132 E 1(7)(5)
£ 5o £ 50
2 25 @ 25
supported by HElayers, we implement the point-wise convolutions 0200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Trials Trials

with linear kernels.

Results and Analysis As shown in Table 3, we have the follow-
ing observations: 1) Under 4CPU+WAN, FlexHE achieves 6.2X and
1.2x total latency reduction compared to HElayers and Cheetah,
respectively; 2) under 1CPU+LAN, FlexHE even achieves a more sig-
nificant improvement on total latency with 11x and 1.1x reduction,
respectively; 3) compared with HElayers, we notice that the effi-
ciency improvement of end-to-end inference is not as large as the
Conv2D as shown in Section 6.2. This is because there are many
point-wise convolutions in ResNet-50, which are implemented by
linear kernels with a lower speedup, especially under 4CPU+WAN.

6.5 Optimization Performance

We also show the exploration process of Conv3D and GRP in Figure
13. We run 1500 trails in total in about 15 minutes.

Results and analysis As can be observed, the exploration pro-
cess converges quickly for both operations. The reason for fast
convergence is two-fold: 1) the whole encoding space is reduced
to a smaller space where most points are legal points so that most
samples are correct encodings; 2) inner ILP optimization can solve

Figure 13. Performance v.s. exploration trails.

for dense encoding efficiently and eliminate searching for spacing,
which is inefficient.

7 Conclusion

In this work, we propose FlexHE, a flexible kernel generation frame-
work to enable automatic generation and optimization of HE ker-
nels for 2PC-based private inference. FlexHE automatically defines
the kernel design space based on a high-level description of DNN
operations. FlexHE formulates a two-level optimization problem
to search for the latency-efficient encoding. With extensive exper-
iments, FlexHE demonstrates better coverage and higher latency
reduction compared to prior-art HElayers, Cheetah, and Falcon.

References
[1] Ehud Aharoni, Allon Adir, Moran Baruch, Nir Drucker, Gilad Ezov, Ariel Farkash,

[2

[3

[4

(6

[7

[10

[11

[12

(13

—

=

flams’

[

=

—

]

]

]

]

[14]

(15

[16

[17

[18

[19

[20

[21

[22

]

]

]

]

]

]

Lev Greenberg, Ramy Masalha, Guy Moshkowich, Dov Murik, Hayim Shaul, and
Omri Soceanu. 2023. HeLayers: A Tile Tensors Framework for Large Neural
Networks on Encrypted Data. Proceedings on Privacy Enhancing Technologies
2023, 1 (Jan. 2023), 325-342. https://doi.org/10.56553/popets-2023-0020
Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. 2019. Optuna: A Next-generation Hyperparameter Optimization Frame-
work. arXiv:1907.10902 [cs.LG]

Song Bian, Zhou Zhang, Haowen Pan, Ran Mao, Zian Zhao, Yier Jin, and Zhenyu
Guan. 2023. HE3DB: An Efficient and Elastic Encrypted Database Via Arithmetic-
And-Logic Fully Homomorphic Encryption. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security. 2930-2944.
Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul Sharma, and Shardul
Tripathi. 2019. EzPC: Programmable and efficient secure two-party computation
for machine learning. In 2019 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 496-511.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homo-
morphic encryption for arithmetic of approximate numbers. In Advances in
Cryptology-ASIACRYPT 2017: 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China, December
3-7, 2017, Proceedings, Part I 23. Springer, 409-437.

Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachéne. 2020.
TFHE: fast fully homomorphic encryption over the torus. Journal of Cryptology
33, 1 (2020), 34-91.

Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin Lauter, Saeed
Maleki, Madanlal Musuvathi, and Todd Mytkowicz. 2019. CHET: an optimizing
compiler for fully-homomorphic neural-network inferencing. In ACM SIGPLAN
PLDI. 142-156.

Keke Gai, Meikang Qiu, Yujun Li, and Xiao-Yang Liu. 2017. Advanced fully ho-
momorphic encryption scheme over real numbers. In 2017 IEEE 4th international
conference on cyber security and cloud computing (CSCloud). IEEE, 64-69.
Karthik Garimella, Zahra Ghodsi, Nandan Kumar Jha, Siddharth Garg, and Bran-
don Reagen. 2023. Characterizing and Optimizing End-to-End Systems for Private
Inference. In ACM ASPLOS (ASPLOS ’23). ACM. https://doi.org/10.1145/3582016.
3582065

Meng Hao, Hongwei Li, Hanxiao Chen, Pengzhi Xing, Guowen Xu, and Tian-
wei Zhang. 2022. Iron: Private inference on transformers. Advances in Neural
Information Processing Systems 35 (2022), 15718-15731.

Zhicong Huang, Wen-jie Lu, Cheng Hong, and Jiansheng Ding. 2022. Cheetah:
Lean and fast secure Two-Party deep neural network inference. In 31st USENIX
Security Symposium (USENIX Security 22). 809-826.

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.
Gazelle: A Low Latency Framework for Secure Neural Network Inference.
arXiv:1801.05507 [cs] (2018). http://arxiv.org/abs/1801.05507

Igor Kononenko. 2001. Machine learning for medical diagnosis: history, state of
the art and perspective. Artificial Intelligence in medicine 23, 1 (2001), 89-109.
Neeraj Kumar, Ritu Chauhan, and Gaurav Dubey. 2020. Applicability of finan-
cial system using deep learning techniques. In Ambient Communications and
Computer Systems: RACCCS 2019. Springer, 135-146.

Eunsang Lee, Joon-Woo Lee, Junghyun Lee, Young-Sik Kim, Yongjune Kim,
Jong-Seon No, and Woosuk Choi. 2022. Low-complexity deep convolutional
neural networks on fully homomorphic encryption using multiplexed parallel
convolutions. In International Conference on Machine Learning. PMLR, 12403—
12422.

Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. 2017. Oblivious Neural Net-
work Predictions via MiniONN Transformations. Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security (2017). https:
//api.semanticscholar.org/CorpusID:3617652

Ximeng Liu, Lehui Xie, Yaopeng Wang, Jian Zou, Jinbo Xiong, Zuobin Ying, and
Athanasios V Vasilakos. 2020. Privacy and security issues in deep learning: A
survey. IEEE Access 9 (2020), 4566-4593.

Fatemehsadat Mireshghallah, Mohammadkazem Taram, Praneeth Vepakomma,
Abhishek Singh, Ramesh Raskar, and Hadi Esmaeilzadeh. 2020. Privacy in deep
learning: A survey. arXiv preprint arXiv:2004.12254 (2020).

Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and
Raluca Ada Popa. 2020. Delphi: A Cryptographic Inference Service for Neural
Networks. In 29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, 2505-2522. https://www.usenix.org/conference/usenixsecurity20/
presentation/mishra

Payman Mohassel and Yupeng Zhang. 2017. Secureml: A system for scalable
privacy-preserving machine learning. In 2017 IEEE symposium on security and
privacy (SP). IEEE, 19-38.

Deevashwer Rathee, Mayank Rathee, Rahul Kranti Kiran Goli, Divya Gupta,
Rahul Sharma, Nishanth Chandran, and Aseem Rastogi. 2021. Sirnn: A math
library for secure rnn inference. In 2021 IEEE Symposium on Security and Privacy
(SP). IEEE, 1003-1020.

Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya
Gupta, Aseem Rastogi, and Rahul Sharma. 2020. CrypTFlow2: Practical 2-party
secure inference. In Proceedings of the 2020 ACM SIGSAC Conference on Computer

[24

[25

[26

[28

[29

[30

and Communications Security. 325-342.

Brandon Reagen, Woo-Seok Choi, Yeongil Ko, Vincent T. Lee, Hsien-Hsin S.
Lee, Gu-Yeon Wei, and David Brooks. 2021. Cheetah: Optimizing and Accel-
erating Homomorphic Encryption for Private Inference. In 2021 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA). 26-39.
https://doi.org/10.1109/HPCA51647.2021.00013

SEAL 2023. Microsoft SEAL (release 4.1). https://github.com/Microsoft/SEAL.
Microsoft Research, Redmond, WA..

Andrei Stoian, Jordan Frery, Roman Bredehoft, Luis Montero, Celia Kherfallah,
and Benoit Chevallier-Mames. 2023. Deep neural networks for encrypted infer-
ence with tfhe. In International Symposium on Cyber Security, Cryptology, and
Machine Learning. Springer, 493-500.

X. Wang, A. J. Malozemoff, and J. Katz. 2016. EMP-toolkit: Efficient MultiParty
computation toolkit. https://github.com/emp-toolkit.

Zijian Wang, Yaoru Sun, Qianzi Shen, and Lei Cao. 2019. Dilated 3D Convolutional
Neural Networks for Brain MRI Data Classification. IEEE Access 7 (2019), 134388—
134398. https://doi.org/10.1109/ACCESS.2019.2941912

Tianshi Xu, Meng Li, Runsheng Wang, and Ru Huang. 2023. Falcon: Accelerating
Homomorphically Encrypted Convolutions for Efficient Private Mobile Network
Inference. arXiv preprint arXiv:2308.13189 (2023).

Rongtian Ye, Fangyu Liu, and Ligiang Zhang. 2018. 3D Depthwise Convolution:
Reducing Model Parameters in 3D Vision Tasks. arXiv:1808.01556 [cs.CV]
Wenyi Zhao, Rama Chellappa, P Jonathon Phillips, and Azriel Rosenfeld. 2003.
Face recognition: A literature survey. ACM computing surveys (CSUR) 35, 4 (2003),
399-458.

https://doi.org/10.56553/popets-2023-0020
https://arxiv.org/abs/1907.10902
https://doi.org/10.1145/3582016.3582065
https://doi.org/10.1145/3582016.3582065
http://arxiv.org/abs/1801.05507
https://api.semanticscholar.org/CorpusID:3617652
https://api.semanticscholar.org/CorpusID:3617652
https://www.usenix.org/conference/usenixsecurity20/presentation/mishra
https://www.usenix.org/conference/usenixsecurity20/presentation/mishra
https://doi.org/10.1109/HPCA51647.2021.00013
https://github.com/Microsoft/SEAL
https://github.com/emp-toolkit
https://doi.org/10.1109/ACCESS.2019.2941912
https://arxiv.org/abs/1808.01556

	Abstract
	1 Introduction
	2 Background
	2.1 Threat Model
	2.2 Notations
	2.3 HE-based 2PC Framework
	2.4 Related Works

	3 Motivations
	4 Analytical Modeling
	4.1 Analysis for Coefficient Encoding
	4.2 Analysis for DL Operators

	5 Framework Design of FlexHE
	5.1 Overview
	5.2 Front-end Analysis
	5.3 Back-end Optimization

	6 Experimental Results
	6.1 Experiment Setups
	6.2 Micro-benckmark Evaluation
	6.3 Evaluation for New Operators
	6.4 End-to-end Evaluation
	6.5 Optimization Performance

	7 Conclusion
	References

