
Chimera: An Analytical Optimizing Framework for
Effective Compute-intensive Operators Fusion

Size Zheng1, †, Siyuan Chen1, †, Peidi Song1, Renze Chen1, Xiuhong Li2, 4, Shengen Yan2,
Dahua Lin3, 4, Jingwen Leng5, Yun Liang1, 6, *

1Peking University, 2Sensetime Research, 3The Chinese University of Hong Kong,
4 Shanghai AI Lab, 5Shanghai Jiao Tong University, 6Beijing Advanced Innovation Center for Integrated Circuits

{zhengsz, chensiyuan, ppppaidy, crz, ericlyun}@pku.edu.cn, {lixiuhong, yanshengen}@sensetime.com
dhlin@ie.cuhk.edu.hk, leng-jw@sjtu.edu.cn

Abstract—Machine learning models with various tensor opera-
tors are becoming ubiquitous in recent years. There are two types
of operators in machine learning: compute-intensive operators
(e.g., GEMM and convolution) and memory-intensive operators
(e.g., ReLU and softmax). In emerging machine learning models,
compute-intensive operators are usually organized in a chain
structure. With the continual specialization of hardware, the gap
between computing performance and memory bandwidth has
become more prominent. Consequently, the implementations of
many compute-intensive operator chains are bounded by memory
bandwidth, and generating fused kernels to improve locality
for these compute-intensive operators becomes necessary. But
in existing machine learning compilers, there lack both precise
analysis and efficient optimization for compute-intensive operator
chains on different accelerators. As a result, they usually produce
sub-optimal performance for these operator chains.

In this paper, we propose Chimera, an optimizing framework
that can efficiently improve the locality of compute-intensive
operator chains on different hardware accelerators. In Chimera,
each compute-intensive operator is composed of a series of
computation blocks. To generate efficient fused kernels for the
operator chains, optimizations for both inter-block and intra-
block are required. For inter-block optimization, Chimera decides
the optimized block execution order by minimizing the data
movement volume among blocks using an analytical model. For
intra-block optimization, Chimera uses unified replaceable micro
kernels to apply hardware-specific optimizations for different ac-
celerators. Finally, Chimera generates fused kernels for compute-
intensive operator chains. Evaluation of batch GEMM chains and
convolution chains on CPU, GPU, and NPU shows that Chimera
achieves up to 2.87×, 2.29×, and 2.39× speedups to hand-tuned
libraries. Compared to state-of-the-art compilers, the speedups
are up to 2.29×, 1.64×, and 1.14× for CPU, GPU, and NPU.

I. INTRODUCTION

Machine learning models that are composed of various
tensor operators are becoming ubiquitous [13], [16], [17], [19],
[24], [40], [42], [48]. There are two types of tensor operators in
current machine learning models: compute-intensive operators
(such as GEMM and convolution) that account for most of
the computations and memory-intensive operators (such as
ReLU and softmax) that are used to connect compute-intensive
operators. Many previous libraries [1]–[3], [5]–[7], [28], [38]
and compilers [12], [14], [23], [36], [43], [45], [47], [49], [54],
[56], [57], [63] are proposed to optimize these operators.

†Both authors contribute equally to this work.
*Corresponding author.

TABLE I
THE COMPUTE/MEMORY BREAKDOWN OF ML MODELS AND THE

PERFORMANCE OF DIFFERENT ACCELERATORS.

ML Model Breakdown
Name %MI %CI %BMM

Transformer 19.45% 40.51% 40.04%
Bert-Base 30.56% 42.79% 26.65%
ViT-Huge 15.63% 50.85% 33.52%

Compute and Memory Characteristics of Accelerators
Device Xeon Gold A100 Ascend 910

Dedicated Unit AVX-512 Tensor Core Cube Unit
Peak Perf. 12 TFlops 312 TFlops 320 TFlops

Memory BW. 131 GB/s 1555 GB/s 1200 GB/s
Peak Perf/BW 92 Flop/byte 200 Flop/byte 267 Flop/byte

With the continual progress of hardware specialization,
the disparity of speed between dedicated compute cores and
memory outside the chips becomes increasingly prominent.
As a result, many compute-intensive operators are bounded by
memory bandwidth. In Table I we show the FP16 peak com-
pute performance and memory bandwidth of several hardware
accelerators: Xeon Gold AVX-512 CPU, A100 Tensor Core
GPU [4], and Ascend 910 NPU [30]. The high ratio of the peak
performance to the memory bandwidth of these accelerators
indicates that they require high arithmetic intensity to achieve
high performance. For example, to unleash the computing
power of Xeon Gold CPU, at least 92 float operations are
expected for per byte loaded.

Moreover, the gap between compute performance and mem-
ory bandwidth is expected to continue to grow. The memory-
bound implementations of many compute-intensive operators
(e.g., batch GEMM in Transformer) are becoming a perfor-
mance bottleneck. We show the execution time breakdown
of some emerging models in Table I (sequence length is set
to 512). The column %MI refers to the ratio of execution
time that all the memory-intensive operators account for; the
column %CI refers to the ratio of compute-intensive operators
except for the batch GEMMs in attention layers; and the
column %BMM refers to the ratio that the batch GEMMs
(whose implementations are memory-bound) account for. As
shown in the Table, the memory-bound batch GEMMs occupy
a large proportion of execution time (26.65% to 40.04%),
which exceeds that of other memory-intensive operators.

978-1-6654-7652-2/23/$31.00 ©2023 IEEE

2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

1113

20
23

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
H

ig
h-

Pe
rf

or
m

an
ce

 C
om

pu
te

r A
rc

hi
te

ct
ur

e
(H

PC
A

) |
 9

78
-1

-6
65

4-
76

52
-2

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

H
PC

A
56

54
6.

20
23

.1
00

71
01

8

Authorized licensed use limited to: Peking University. Downloaded on April 02,2023 at 12:59:04 UTC from IEEE Xplore. Restrictions apply.

Therefore, optimizations to these memory-bound compute-
intensive operators to improve locality and reduce the pressure
on memory bandwidth are necessary.

Kernel fusion is an effective optimization for memory-
bound operators. However, the compute-intensive operators
in emerging models often form a chain structure with strict
data dependency and thus generating efficient fused kernels
for the compute-intensive operator chains is difficult. First,
it is hard to decide the execution order of the computations
of compute-intensive operator chains. Each operator in the
chain can be decomposed into a series of computation blocks
as pointed in previous works [58], [65]. Different execution
order of these computation blocks can result in different data
movement volume among the blocks and thus the performance
will also change drastically. Existing works [23], [36], [57],
[63], [65] fail to optimize the execution order for compute-
intensive operator chains because they lack a precise per-
formance model to evaluate the data movement volume of
different ordering choices of operators. Second, optimizing
the computations within each block using hardware-specific
features is challenging. There lacks a unified approach for
extensible and flexible micro kernel generation for different
hardware accelerators. Previous works [36], [54], [63] use
fixed micro kernels so they can hardly be generalized to other
hardware accelerators.

In this paper, we present Chimera, an optimization frame-
work for machine learning models that generates fused kernels
for compute-intensive operator chains for high performance.
Chimera decomposes compute-intensive operator chains into
computation blocks and its optimizations then fall into two
aspects: inter-block and intra-block optimization. For inter-
block optimization, Chimera optimizes the block execution
order by minimizing the data movement volume (maximizing
data locality). In detail, Chimera enumerates different block
execution orders and analytically estimates the input/output
data movement volume among blocks. After that, Chimera
selects the execution order that gives the minimal data move-
ment volume so that the optimal data locality is achieved.

Different from previous works [26], [65] that only opti-
mize the block orders within one compute-intensive operator,
Chimera’s optimization is applicable to multiple compute-
intensive operators by considering intermediate result reuse
and interleaving of blocks from different operators. For intra-
block optimization, Chimera applies hardware-specific op-
timizations. To handle hardware diversity, Chimera uses a
unified replaceable micro kernel as a high-level abstraction and
generates low-level micro kernel implementations for different
hardware architectures during code generation. Finally, the
computation blocks from different compute-intensive operators
are interleaved according to the block execution order and
low-level device code is generated by using hardware-specific
micro kernels. In summary, this paper makes the following
contributions:

1) It proposes an analytical model to evaluate the data
movement volume of memory-bound compute-intensive
operator chains.

Input Tensor

MM MM MM

Q K V

BMM

Softmax

BMM

Output Tensor

B
a

tc
h

 G
E

M
M

 C
h

a
in

Input Tensor

Conv3x3

ReLU

Conv1x1

ReLU

Output Tensor

C
o

n
v

o
lu

t
io

n
 C

h
a

in

a) b)

Fig. 1. Typical tensor operators in machine learning. a) batch GEMM chains
from Transformers. b) convolution chains from CNNs.

2) It proposes to use replaceable micro kernels for different
accelerators and uses an analytical approach to optimize
the micro kernels.

3) It achieves better performance than state-of-the-art com-
pilers for different compute-intensive operator chains.

Evaluation of batch GEMM chains and convolution chains
on CPU, GPU, and NPU shows that Chimera achieves up to
2.87×, 2.29×, and 2.39× speedups to hand-tuned libraries [1],
[6], [8]. Compared to state-of-the-art compilers [23], [43],
[54], [56], [57], the speedups are up to 2.29×, 1.64×, and
1.14× for CPU, GPU, and NPU.

II. BACKGROUND AND CHALLENGES

In this section, we first introduce several typical ten-
sor operators in machine learning models including GEMM
chains from Transformers [48] and convolution chains from
CNNs [19], [40]. Then, we explain the major challenges of
generating fused kernels for these operator chains.

A. Tensor Operators in Machine Learning

Current machine learning models are usually constructed
with multiple tensor operators. Unlike previous models that
wrap some memory-intensive element-wise or reduce opera-
tors around one compute-intensive operator such as GEMM
and convolution, recent models tend to assemble multiple
compute-intensive operators together. In Figure 1, we show
two typical examples. In part a) there’s a self-attention layer
that is widely used in Transformer-based models such as
Bert [16] and ViT [17]. The main component of this layer
includes a batch GEMM chain that is composed of two batch
GEMMs and one softmax layer. As shown in Table I in
Section I, the batch GEMM chain occupies a substantial part
of the whole execution time (26.65% to 40.04%). In part b)
there’s a convolution chain that is composed of one 3 × 3
convolution, one 1 × 1 convolution, and two ReLU layers.
The convolution chain is common in CNNs [19], [40]. The
convolutions can also become memory-bound under certain
input shapes (discussed in Section VI).

1114

Authorized licensed use limited to: Peking University. Downloaded on April 02,2023 at 12:59:04 UTC from IEEE Xplore. Restrictions apply.

A C

B
D

E

dim k

d
im

 k

dim l

d
im

 m

d
im

 l
d

im
 m

dim n

No. order A B D E

1 mnkl l - k k,l

2 mnlk - - k k,l

3 mknl n,l - k k,l

4 mkln l,n n k k

5 mlnk - - k k

6 mlkn n n k k

24 lknm - n,m m,k m,k

Reuse Dimension

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

M

K

L

N

Fig. 2. Different block execution orders result in different data reuse (use
GEMM chain as an example).

B. Major Challenges

Here, we present two major challenges in generating effi-
cient fused kernels for compute-intensive operator chains and
explain why previous work can’t address these challenges. We
summarize the comparison of related work in Table II.

1) The execution order of inter-blocks: Compute-intensive
operators can be represented by a series of computation blocks
as pointed out in previous works [58], [65] and the block
execution order is critical to locality optimization. When
fusing chains of compute-intensive operators, the main op-
timization objective is to select the optimal execution order
that maximizes data reuse. We use the GEMM chain example
in Figure 2 (C = A×B,E = C×D) to illustrate the effect of
different execution orders. There are four different dimensions
(m,n, k, l) in the GEMM chain and the two GEMMs are tiled
into multiple computation blocks. The block execution order
can be represented by the ordering of the four dimensions
as shown in the Table in Figure 2. The order mnkl (the first
row) indicates that we execute the blocks along dimension
l first, then dimension k, then dimension n, and finally,
dimension m. Under this execution order, matrix A is reused
along dimension l; matrix B is not reused because when we
traverse the blocks along dimension l, different data blocks
of matrix B are accessed. Matrix C is an intermediate result
and is stored in on-chip memory, so we don’t show its reuse
dimensions. Matrices D and E are always reused along k
dimension because k is private to the first GEMM, which
will not iterate on the computations of the second GEMM.
In addition, the size of each computation block also affects
the final data movement volume. As a result, the optimization
problem should model block decomposition strategy and block
ordering choices together.

Previous works [21], [23], [27], [36], [54], [56]–[58],
[63], [65] only partially solve the problem as shown in
Table II. Ansor [57], TASO [23], DNNFusion [36], MOpt [26],
AStitch [63], and Roller [65] only optimize the block orders
within one compute-intensive operator at a time and fix the
inter-operator order by using expert rules. DNNFusion [36]
classifies compute-intensive operators as the Many-to-Many
mapping type and fails to fuse two or more Many-to-May
operators together because its code generator cannot predict
the benefit of such complex fusion. CoSA [21] uses mixed-
integer programming (MIP) to optimize the total execution

Input

Program
Inter-block

reordering

Intra-block

scheduling

Code

Generation

Block

Decomposition

(Sec. IV-A) (Sec. IV-B, IV-C) (Sec. V-A) (Sec. V-B)

Fig. 3. The overall workflow of Chimera.

cycles without considering the inter-block memory access.
HASCO [53] uses reinforcement learning and Bayesian op-
timization to explore the hardware-software desgin space. But
operator fusion is not in the design space. AKG [56] uses
polyhedral models to improve locality. But the polyhedral
model is a general approach and its optimization space is
too large to explore. As a result, it relies on heuristics to
find solutions, which often gives sub-optimal performance in
practice. Atomic [58] only considers inter-engine data reuse
(e.g., the reuse of matrix C in Figure 2). But the data reuse
from input/output data access also has a great impact on
performance, which is not optimized in Atomic.

2) The intra-block code generation: Scheduling the com-
putation within one block is the core to high-performance
kernel implementation. The instructions within one block
should be scheduled to hide the latency of memory access
and maximize the utilization of the computation pipeline.
Previous works adopt different approaches for intra-block
optimization as shown in Table II. TASO [23], CoSA [21], and
Atomic [58] don’t generate low-level code and they have no
intra-block optimizations. AKG [56] and Ansor [57] use loop
transformations along with tuning methods to generate micro
kernels. But they rely on a general instruction selection logic
(in TVM [14] and LLVM [25]) without utilizing hardware-
specific instructions such as AVX-512 and Tensor Core as
pointed out in previous work [60]. In addition, the tuning
process is expensive because it requires hundreds of hardware
profiling steps to obtain a good performance. DNNFusion [36],
Astitch [63], and BOLT [54] use hand-tuned micro kernels to
optimize a fixed computation pipeline. However, their micro
kernels are tightly coupled with the inter-block optimizations,
making it hard to support new operators or new accelerators.

III. OVERVIEW OF CHIMERA

In this section, we present the overall workflow of Chimera.
As shown in Figure 3, Chimera is composed of four
parts: block decomposition, inter-block reordering, intra-block
scheduling, and code generation. The input of Chimera is a
compute DAG in machine learning (described by domain-
specific language). Each operator in the DAG is firstly de-
composed into a series of computation blocks (Section IV-A).
Then, an optimized block execution order is selected by
resorting to an analytical model (Section IV-B). The analytical
model relies only on the analysis of loop nests of the dense
tensors. Therefore, it is general for different model topology
structures (e.g. different number of tensors or operators). The
original dependencies among the blocks are all preserved so
that all the block orderings selected by Chimera are valid.
After that, intra-block optimization is applied by using re-
placeable micro kernels. Chimera supports different hardware

1115

Authorized licensed use limited to: Peking University. Downloaded on April 02,2023 at 12:59:04 UTC from IEEE Xplore. Restrictions apply.

TABLE II
THE COMPARISON OF PREVIOUS REPRESENTATIVE WORK AND CHIMERA.

Name Codegen Inter-block Intra-block Supported HW Optimization
Optimization Optimization CPU GPU NPU Methodology

AKG [56] Yes Minimize Reuse Distance Loop Transformation Yes Yes Yes Polyhedral
DNNFusion [36] Yes Template-based Fusion Fixed Micro Kernel Yes Yes No Tuning

TASO [23] No Graph Substitution Rules None No Yes No Tuning
AStitch [63] Partial Kernel Stitching Rules Fixed Micro Kernel No Yes No Rule-based
CoSA [21] No Minimize Compute Cycles None No Yes No MIP

Atomic [58] No Minimize Inter-engine Movement None No No No DP
MOpt [26] Yes Optimize Single-op Locality Fixed Micro Kernel Yes No No Analytical
Roller [58] Yes rProgram Generation Algorithm Generated Micro Kernel No Yes No Cost Model
Ansor [57] Yes Sketch Generation Rules Loop Transformation Yes Yes No Tuning
BOLT [54] Partial Persistent Kernels Fixed Micro Kernel No Yes No Tuning

Chimera (ours) Yes Minimize Data Movement Replaceable Micro Kernel Yes Yes Yes Analytical

backends. For each backend, Chimera registers hardware-
specific micro kernel implementations to a special abstraction
called replaceable micro kernel so that hardware diversity can
be handled in a unified manner (in Section V-A). The details on
the low-level implementations are introduced in Section V-B.

IV. INTER-BLOCK OPTIMIZATION

In this section, we introduce our inter-block optimization:
block decomposition and block reordering.

A. Block Decomposition

Each compute-intensive operator in machine learning mod-
els can be decomposed into a series of computation blocks.
The decomposition is implemented via loop tiling and re-
ordering. A computation block contains a small loop nest
that accesses tiles of input data to produce a tile of output
data. Usually, one computation block can be placed in one
processing core and all the accessed data of one block can
be accommodated by the on-chip local memory. The size
of each computation block is controlled by decomposition
parameters. We represent all the decomposition parameters
using a vector ~S = (s1, s2, ..., sI) (totally I parameters).
For example, when we decompose a GEMM chain, we will
use (TM , TN , TK , TL) because there are four dimensions to
decompose; for a convolution chain, we will have up to ten
dimensions.

In block decomposition, we aim to select the optimal block
decomposition parameters ~S that can maximize the overall
performance. Previous work [58] proposes to calculate these
parameters independently to balance the computation overhead
of different blocks. But as we will show in the next section,
the decomposition parameters cannot be independently chosen
because they influence the overall data reuse jointly with the
block execution order.

B. Minimizing Data Movement Volume via Block Reordering

Our aim in inter-block optimization is to find the optimized
block execution order and decomposition parameters ~S that
minimize the total data movement volume. Minimizing data
movement volume is equivalent to maximizing data locality (or
reuse). The computation blocks from different operators can

Algorithm 1: Data Movement Volume Calculation and
Memory Usage Algorithm for Operator Chains

input : Operator chain Ops
input : Permutation Perm = (lp1 , lp2 , ..., lpI)
input : Decomposition parameters ~S = (s1, s2, ..., sI)
output : data movement volume DV
output : memory usage MU

1 DV = 0; MU = 0;
2 for op ∈ Ops do
3 total DF = 0;
4 for tensor T ∈ op.allTensors() do
5 DF = getFootprint(T , ~S);
6 total DF += DF;
7 if T ∈ Ops.IOTensors() then
8 DM = DF;
9 keep reuse = true;

10 for loop lpi ∈ reversed(Perm) do
11 if lpi ∈ op.allLoops() then
12 if lpi accesses tensor T then
13 keep reuse = false;

14 if not keep reuse then
15 DM *= dLpi

spi
e

16 DV += DM;

17 for loop lpi ∈ Perm do
18 if lpi is private to op then
19 Perm.erase(lpi);

20 MU = max(MU, total DF);

21 return DV, MU;

be reordered to obtain a better data reuse as introduced in Fig-
ure 2. For simplicity, we assume that there are two compute-
intensive operators in the input program. For more compute-
intensive operators, the analysis method remains similar. Note
that there are no constraints on memory-intensive operators.
For memory-intensive operators, we use the standard fusion
optimizations as in previous work [43], [63], which will not
be discussed in this paper.

We suppose there are P loops in the first compute-intensive
operator and Q loops in the second compute-intensive opera-
tor. The different orders of these loops indicate different block

1116

Authorized licensed use limited to: Peking University. Downloaded on April 02,2023 at 12:59:04 UTC from IEEE Xplore. Restrictions apply.

execution orders as illustrated in the example in Figure 2 in
Section II-B1. In general, the whole design space is composed
of all the (P + Q)! different permutations of these loops.
But the actual design space size can be much smaller than
(P + Q)! because the two compute-intensive operators may
share some common loops and the ordering of common loops
has no effect on data reuse. In the example of GEMM chain
in Figure 2, there are 24 different reordering choices but
not (3 + 3)! = 720. This is because the two GEMMs have
two common dimensions m and l, and there are only four
independent loops (m,n, k, l). So the design space size is 4!.
In the following, we only consider that there are I (I ≤ P+Q,
which corresponds to the number of parameters in ~S) inde-
pendent loops (l1, l2, ..., lI) and the actual design space size
is I!. The original loop trip count of loop li is denoted as Li.
A permutation of these loops is denoted as (lp1

, lp2
, ..., lpI

),
where (p1, p2, ..., pI) is a permutation of (1, 2, 3, .., I). The
blocks execute from the right-most (innermost) loop to the
left-most (outermost) loop.

The main idea of finding the optimized block execution
order (i.e., loop permutation choice) is to analytically express
the data movement volume with respect to the decomposition
parameters ~S for each permutation choice. By doing so, we
can minimize the data movement volume by finding a suitable
~S and get the optimized permutation choice that gives the
minimal data movement volume among all the candidates.

Intuitively, the data movement volume for each tensor is the
product of the footprint of the tensor and the trip counts of the
surrounding loops. In addition, we make three observations
about the data movement. First, some loops will not cause
any data movement because both their iteration variables and
their inner loops’ iteration variables are not used in tensor
access indices. Second, once a loop causes data movement, all
the surrounding outer loops will cause data movement. Third,
the loops that only appear (private) in producer operators will
not cause data movement in consumer operators. We use the
GEMM chain example in Figure 2 to explain the observations.
Under mknl order, loops n, l will not cause data movement for
matrix A because their loop variables are not used to access
matrix A (observation 1); under mnlk order, loops n, l will
cause data movement for matrix A because the inner loop k
has already caused data movement (observation 2); under any
block order, loop k will not cause data movement to matrices
D,E because k is the reduction loop of the first GEMM,
which has no effect on the second GEMM (observation 3). We
use the observation 1 and 2 to calculate the data movement
among blocks within one operator and use the observation 3
to detect data reuse between operators.

Algorithm 1 computes the data movement volume for a
given permutation choice. In detail, for the target operator
chain Ops, for a given permutation (lp1

, lp2
, ..., lpI

), the Algo-
rithm traverses the operator chain according to topology order
(from producers to consumers, at line 2). Only the input/output
tensors of the whole operator chain (returned by function
IOTensors) are considered (line 7) because the intermediate
results are all stored in on-chip memory. We use getFootprint

TABLE III
DATA MOVEMENT VOLUME AND MEMORY USAGE FOR GEMM CHAIN

UNDER THE ORDER OF mlkn.

A B C D E
DM MKd L

TL
e KLd M

TM
e 0 NLd M

TM
e MNd L

TL
e

DF TMTK TKTL TMTL TLTN TMTN

function to calculate the data tile footprint (DF) of each tensor
(line 5) according to the decomposition parameters ~S. To
calculate the data movement volume, we need to figure out
how many times the data tile is replaced during execution.

Note that only the loops that access the tensor will
cause data tile replacement (observation 1). We use a flag
keep reuse to check whether the current loop lpi

will cause
replacement (line 12-14). If so, we increase the data movement
of current tensor T by multiplying the loop trip counts (line
15). This flag remains true for all other outer loops and multi-
plies their trip counts to data movement volume (observation
2). Before we move to the consumer operators, we need to
exclude the influence of the private loops of the producer
operators (see line 17-19) because such private loops won’t
iterate over the tensors of the consumer operators (observation
3). The algorithm also returns the maximal memory usage MU,
which will be used as the problem constraints.

After getting the data movement volume DV and the mem-
ory usage MU, we can define the optimization problem as

min~S DV, s.t. MU ≤MemoryCapacity (1)

To solve this constrained optimization problem, we first solve
Equation 1 in real number domain (R) and then get the
approximate integer solution by floor rounding. In detail, we
use the Lagrange Multiplier method to get the extreme values
of DV and the corresponding extreme points ~S∗. We then get
approximate integer candidate solutions by the floor rounding
of ~S∗. Finally, the integer candidate that minimizes DV is
chosen as the final solution.

We use the GEMM chain example in Figure 2 to elaborate
more on the optimization problem. We use the execution order
mlkn in Figure 2 (in row 6) for demonstration. By using Algo-
rithm 1, we can get the data movement volume and footprint of
matrix A,B,C,D,E as shown in Table III (in this example,
the decomposition parameters are ~S = (TM , TN , TK , TL)).
DM represents data movement volume, and DF represents data
footprint of each tensor. The DM of C is 0 because it is an
intermediate result and is always reused in on-chip memory.
So the total data movement volume of the GEMM chain is

DVGEMM Chain = DMA +DMB +DMC +DMD +DME

=MKd L
TL
e+KLd M

TM
e+NLd M

TM
e+MNd L

TL
e

The peak memory usage MU of all the tensors is

MU = max{GEMM1MU ,GEMM2MU}
GEMM1MU = DFA +DFB +DFC = TMTK + TKTL + TMTL

GEMM2MU = DFC +DFD +DFE = TMTL + TLTN + TMTN

1117

Authorized licensed use limited to: Peking University. Downloaded on April 02,2023 at 12:59:04 UTC from IEEE Xplore. Restrictions apply.

To minimize the total data movement volume without ex-
ceeding memory capacity limit, the optimization problem is
formulated as follows

min DVGEMM Chain s.t. MU ≤MemoryCapacity

By using Lagrange Multiplier method, we get the minimum
point and the minimal data movement volume:

DV ∗ =
2ML(K +N)

T ∗M
, T ∗M = T ∗L = −α+

√
α2 +MC,T ∗N = α

The MC is short for MemoryCapacity. α is a lower
bound of TN , TK . We set the lower bound because TN , TK
are free variables in this optimization problem. Further, we
convert real values to integers by TX = min{bT ∗

Xc, X}
(X ∈ {M,N,K,L}). We could also estimate the gap between
the approximated solution and the optimal one and show that
our solution is close to the optimal one with constant bounds.
We use the ratio of the approximated data movement volume
(DVapp) to the optimal value (DV ∗) to show the difference:

DVapp

DV ∗
≤ maxX∈{M,L}{1 +

T ∗X
X

+
1

TX
} ≤

maxX∈{M,L}{1 +
√
MC

X
+

1

min{X,
√
MC}

}, (MC >> α)

C. Optimization for Multi-level Memory Hierarchy

In previous sections, we only consider one level of memory.
For multiple levels of on-chip memory, our computation blocks
can be further decomposed into sub-blocks recursively. The
reordering of these sub-blocks will influence the data move-
ment volume in higher level on-chip memory. We also model
the cost of data movement across different layers of memory
with respect to hardware configurations. Suppose that we have
D levels of on-chip memory. The data movement volume for
level d is defined as DVd(~Sd), where ~Sd is the decomposition
parameter list for level d. Then, the data movement cost
Costd(~Sd) from level d+1 to level d is calculated as follows.

Costd(~Sd) = DVd(~Sd)/bwd (2)

where bwd is the memory bandwidth. To minimize the overall
data movement cost, we need to minimize the slowest data
movement stage through all the memory levels. Therefore, we
formulate the optimization as follows,

min ~S1, ~S2,..., ~SD
{max{Cost1(~S1), ..., CostD(~SD)}},

s.t. MU1 ≤MC1, ...,MUD ≤MCD

(3)

MCd is the MemoryCapacity of level d memory; MUd

is the memory usage of level d memory. Chimera uses this
objective function to decide the optimal block decomposition
parameters and execution order for each level of memory.

Fig. 4. Replaceable Micro Kernel.

V. INTRA-BLOCK OPTIMIZATION

In this section, we introduce the hardware-specific opti-
mizations in Chimera. Different hardware accelerators require
different optimizations to achieve high performance. Chimera
leverages replaceable micro kernels to handle the hardware
diversity.

A. Replaceable Micro Kernels

The programming model and optimization methods of dif-
ferent accelerators are different. For example, to implement
a high-performance micro kernel for matrix multiplication,
on CPUs, we need to program assembly to use the SIMD
units; on GPU, we need to use Tensor Core intrinsic to
map computations to Tensor Core units; on NPU, we need
to add pragmas to loops to instruct the low-level compiler
to generate accelerator instructions. To handle the hardware
diversity through a unified approach, Chimera uses replaceable
micro kernels, which are extensible and flexible for different
hardware backends.

A replaceable micro kernel is an abstraction for the com-
putation block that describes a naive loop nest over the in-
put/output data buffers. For different accelerators, the replace-
able micro kernel can be substituted by low-level hardware-
specific implementations in either assembly, intrinsic, or prag-
mas. In Chimera, we register different hardware-specific micro
kernels that perform the same computation (using different
device instructions) under the same replaceable micro kernel.
During compilation and code generation, Chimera will lower
the replaceable micro kernel to the corresponding registered
low-level micro kernel according to the target hardware. We
use an example in Figure 4 to explain replaceable micro
kernel in detail. In this example, we use a replaceable micro
kernel to describe a 16× 16 matrix multiplication using high-
level loop nests and register three different low-level micro
kernel implementations to this replaceable micro kernel. The
micro kernels are written in low-level code (e.g., around
140 lines of assembly for CPU) and registered to Chimera
using Chimera’s Python interface. During code generation, the
three different implementations will be automatically selected
according to the target device. The registered low-level code
will be automatically generated by the compiler.

B. Micro Kernel Code Generation

The code generation of micro kernels is tightly coupled
with operators. Here, We focus on matrix multiplication micro

1118

Authorized licensed use limited to: Peking University. Downloaded on April 02,2023 at 12:59:04 UTC from IEEE Xplore. Restrictions apply.

kernels, which can be reused by various compute-intensive
operators including GEMM, batch GEMM, and convolution.

CPU Micro Kernels. The pseudo-code of the micro kernel
is displayed in Algorithm 2. We adopt an outer-product ap-
proach similar to [26], [31]. The micro kernel hides the latency
of the register load/store by providing enough concurrent
computations and keeps the FMA pipeline busy by emitting
MI × NI consecutive FMA instructions together (MI × NI is
the pipeline depth).

To decide parameters (MI, NI, MII, KI) of the microKernel,
we maximize the arithmetic intensity (AI) under the constraint
of available registers.

max
MI,NI,MII

AI = #ComputeInst/#LoadStoreInst

s.t. RegUsed ≤ #Registers

where #ComputeInst =MI ×NI ×KI
#LoadStoreInst = KI × (MI +NI) + 2MI ×NI
RegUsed =MI ×NI +NI +MII

For example, for Cascadelake microarchitecture with 32
ZMM registers, we set MI, NI, MII to 6, 4, 2 and set KI dy-
namically according to the problem size with a pipeline depth
of 24 to maximize the AI . During code generation, low-level
assembly code will be generated according to Algorithm 2 and
the parameters (MI, NI, MII, KI).

Algorithm 2: CPU Micro Kernel Design
constant : RegLen # the vector register length.
parameter : MI, NI, MII, KI
input : A[MI, KI], B[KI, NI*RegLen]
input/output: C[MI, NI*RegLen]
register : RegA[MII], RegB[NI], RegC[MI, NI]

1 for m in [0, MI, 1) do
2 for n in [0, NI, 1) do
3 vecLoad(C[m,n*RegLen: (n+1)*RegLen],

RegC[m,n])

4 for k in [0, KI, 1) do
5 for n in [0, NI, 1) do
6 vecLoad(B[k,n*RegLen: (n+1)*RegLen],

RegB[n])
7 for mo in [0,MI, MII) do
8 for mi in [0, MII, 1) do
9 vecLoad(A[mo+mi,k], RegA[mi])

10 for mi in [0, MII, 1) do
11 for n in [0, NI, 1) do
12 FMA(RegC[mo+mi,n], RegA[mi], RegB[n])

13 for m in [0, MI, 1) do
14 for n in [0, NI, 1) do
15 vecStore(C[m,n*RegLen: (n+1)*RegLen],

RegC[m,n])

GPU Micro Kernels. On Tensor Core GPUs, we can use the
WMMA mma sync intrinsic to compute a 16×16×16 matrix
multiplication at a time. However, directly using the intrinsic
is not efficient because each mma sync intrinsic requires one

corresponding matrix load and store operation. As a result,
the arithmetic intensity is low, and the performance will be
bounded by memory operations. To improve the arithmetic
intensity, our micro kernel for GPU unrolls the inner loops
and schedules the intrinsic order to perform a tiled outer-
product. In detail, the micro kernel loads two 16×16 matrices
for each operand matrix at a time and updates 2 × 2 tiles of
16×16 matrices for the result matrix. In this implementation,
each loaded matrix tile is reused for two times and the overall
arithmetic intensity is improved.

NPU Micro Kernels. The Ascend NPU uses a Python DSL
with pragmas. The NPU micro kernel is implemented using
pragmas that maps computations to dedicated hardware units
(cube unit and vector unit). Low-level device binary code will
be generated by the NPU’s close-source compiler CNCC [1].
To implement the matrix multiplication micro kernel, we have
to use the mad pragma, which expects six nested loops that
computes a tiled matrix multiplication:

C[m1, n1,m2, n2]+ = A[m1, k1,m2, k2] ∗B[k1, n1, n2, k2]

(m1 ≤M1,m2 ≤M2, n1 ≤ N1, n2 ≤ N2, k1 ≤ K1, k2 ≤ K2)

To produce the expected loop nest and loop order, we pack
the input matrices in on-chip memory using DMA instructions
to produce contiguous data arrays. The overall arithmetic
intensity of this micro kernel is

AI =
M1×M2×N1×N2

M1×M2 +N1×N2

We maximize the AI by setting

M2 = N2 = Lane of cube units

and setting M1 = N1 according to the L0 on-chip buffer size
of the NPU.

VI. EVALUATION

A. Evaluation Setup

We test both subgraph fusion performance and full network
performance. The subgraphs we use include the batch GEMM
chains from Bert [16], ViT [17], and MLP-Mixer [46] and
the convolution chains from CNNs such as SqueezeNet [22]
and Yolo [40], [41]. For the whole network evaluation, we
use Transformer [48], Bert [16], and ViT [17]. We use three
server-class accelerators: Intel Xeon Gold 6240 AVX-512
CPU (1.125MB L1 cache, 18MB L2 cache, and 24.75MB L3
cache), Nvidia A100 Tensor Core GPU (up to 164KB/SM
shared memory, 40.96MB L2 cache), and Huawei Ascend
910 NPU (64KB L0A/B buffer, 256KB L0C buffer, 1MB
L1 buffer, 256KB Unified Buffer). Our baseline includes
both hand-tuned libraries and state-of-the-art compilers. For
libraries, we compare to PyTorch [38] (that uses MKL [3] and
oneDNN [2] on CPU and uses CuBlas [5] and CuDNN [6]
on GPU), TensorRT [8], and CANN (library for NPU). For
compilers, we compare to the state-of-the-art machine learning
compilers including Relay [43], Ansor [57], TASO [23],
TVM+Cutlass [54], and AKG [56] (compiler for NPU).

1119

Authorized licensed use limited to: Peking University. Downloaded on April 02,2023 at 12:59:04 UTC from IEEE Xplore. Restrictions apply.

PyTorch Relay Ansor oneDNN Chimera

R
e

la
ti

v
e

 P
e

rf
o

rm
a

n
ce

a) Batch GEMM fuse batch GEMM b) Batch GEMM fuse softmax fuse batch GEMM

R
e

la
ti

v
e

 P
e

rf
o

rm
a

n
ce

c) Conv fuse Conv d) Conv fuse ReLU fuse Conv

0

1

2

3

4

5

6

C1 C2 C3 C4 C5 C6 C7 C8 GEO

0

1

2

3

4

5

6

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 GEO

0

1

2

3

4

5

6

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 GEO

0

1

2

3

4

5

6

C1 C2 C3 C4 C5 C6 C7 C8 GEO

Fig. 5. The performance of fusing batch GEMM chains and fusing convolution chains on CPU.

TABLE IV
THE CONFIGURATIONS OF BATCH GEMM CHAINS.

Name batch M N K L Network
G1 8 512 64 64 512 Bert-Small
G2 12 512 64 64 512 Bert-Base
G3 16 512 64 64 512 Bert-Large
G4 12 256 64 64 256 ViT-Base/14
G5 16 256 64 64 256 ViT-Large/14
G6 16 256 80 80 256 ViT-Huge/14
G7 12 208 64 64 208 ViT-Base/16
G8 16 208 64 64 208 ViT-Large/16
G9 16 208 80 80 208 ViT-Huge/16

G10 1 512 64 64 256 MLP-Mixer
G11 1 768 64 64 384 MLP-Mixer
G12 1 1024 64 64 512 MLP-Mixer

B. Subgraph Performance

The subgraphs we use in this section include batch GEMM
chains and convolution chains. We have introduced them
in Section II-A. For batch GEMM chains, we evaluate
the performance of both with softmax as the intermedi-
ate memory-intensive operator and without any intermedi-
ate operator. For convolution chains, we evaluate the per-
formance of both using ReLU as the intermediate operator
and without any intermediate operators. The input config-
urations of the subgraphs are shown in Table IV and Ta-
ble V. In Table IV, (batch,M,K)× (batch,K, L) is the first
batch GEMM problem size. (batch,M,L) × (batch, L,N)
is the second batch GEMM problem size. In Table V,
the first convolution problem size is (batch, IC,H,W) ×
(OC1, IC, k1, k1), and the second convolution problem size
is (batch, OC1, bH/st1c, bW/st1c)× (OC2, OC1, k2, k2). st1
is the stride of the first convolution. st2 is the stride of the
second convolution.

AVX-512 CPU Performance. The results are shown in

TABLE V
THE CONFIGURATIONS OF CONVOLUTION CHAINS.

Name IC H W OC1 OC2 st1 st2 k1 k2
C1 64 112 112 192 128 2 1 3 1
C2 32 147 147 64 80 2 1 3 1
C3 64 56 56 128 64 1 1 3 1
C4 128 28 28 256 128 1 1 3 1
C5 16 227 227 64 16 4 1 3 1
C6 64 56 56 64 64 1 1 1 3
C7 64 56 56 64 64 1 1 1 1
C8 256 56 56 256 64 1 1 1 1

Figure 5. We show the relative performance normalized to
PyTorch. Ansor requires a long time for tuning (about half
an hour for one operator). We set it to tune 1000 trials
for each subgraph. Chimera only needs several minutes to
generate the fused kernels because it uses an analytical model.
Relay can use hand-optimized templates without tuning. For
batch GEMM fused with batch GEMM, Chimera can obtain
speedups compared to both hand-tuned libraries and compilers
because it can fuse the computations of two batch GEMMs and
improve the overall locality. The overall speedups are 2.62×
to PyTorch, 4.78× to Relay, 1.40× to Ansor, and 3.28× to
oneDNN. For fusing batch GEMMs and softmax, Chimera
achieves an average 1.62× speedup to PyTorch. The speedups
to Relay and Ansor are 7.89× and 2.29×.

For fusing convolution chains, we also use the convolu-
tion layers from real-world networks [19], [22], [40], [41].
Convolutions (especially when kernel size is 3× 3) are more
complicated than batch GEMM. The sliding windows of 3×3
convolutions can result in re-computations after fusion. Relay
and Ansor can’t fuse these complex operators together. So they
generate separate kernels for them. The speedup of Chimera is
2.38× to Relay and 1.94× to Ansor. In Figure 5 part d), we
show the performance of Chimera when fusing convolution

1120

Authorized licensed use limited to: Peking University. Downloaded on April 02,2023 at 12:59:04 UTC from IEEE Xplore. Restrictions apply.

chains with ReLU. The speedups are in line with those of
fusing two convolutions (2.87× to Pytorch, 2.30× to Relay,
and 1.71× to Ansor).

Tensor Core GPU Performance. The results are shown
in Figure 6. For fusing batch GEMM and batch GEMM
(Figure 6 part a), the average speedup is 2.77× to PyTorch,
3.30× to TASO, 1.69× to Relay, 1.33× to Ansor, and 2.29×
to TensorRT. The speedup comes from fusing the memory-
bound batch GEMMs together and reducing off-chip memory
access. The total DRAM access of Chimera is reduced by
9.86% − 59.54% compared to PyTorch. Compilers such as
TASO and Ansor don’t fuse the two batch GEMMs and result
in two separate kernel calls in the generated code.

We also compare to TVM+Cutlass [54] and the average
speedup is 1.51×. Cutlass [7] is state-of-the-art open-source
DNN template library for GPU. Recent work BOLT [54]
explores the fusion of GEMM chains and convolution chains
using Cutlass templates. The relevant code is open-sourced
and is available in TVM [14]. We use the code to generate
kernels for batch GEMM chain and show the performance in
Figure 6, which is denoted as TVM+Cutlass. However, we
profile the result code and find TVM+Cutlass fails to achieve
high performance for our test cases. The reason is two-fold.
First, the Cutlass templates are developed manually by experts
and is limited in flexibility. In detail, TVM uses a front-
end analysis to find fusible subgraphs in the input program
by pattern matching. The pattern matching is not flexible
and classifies batch GEMM chain as a non-fusible subgraph.
Second, Cutlass templates only use a fixed block execution
order, which may miss the optimal execution order when
executing two consecutive GEMMs. By contrast, Chimera can
explore different execution orders through an analytical model,
which is the source of speedup.

For fusing batch GEMM chains with softmax (Figure 6 part
b), the average speedup to PyTorch is 2.74×. We don’t show
the performance of TASO and TVM+Cutlass because they
don’t support softmax. Relay and Ansor generate three kernels
for this subgraph because they can’t fuse softmax. Softmax
is more complicated than element-wise operators because it
requires three dependent steps in calculation: exp, sum, and
div. Chimera can fuse softmax because the sum operation of
softmax can be merged into the second batch GEMM, and
the order of div operation and the second batch GEMM can
be swapped. As a result, the average speedup of Chimera is
1.74× to Relay and 1.64× to Ansor.

For fusing convolution and convolution (Figure 6 part c),
the average speedups to PyTorch and TensorRT are 5.79× and
2.01×. Not all the convolution layers in the CNNs are suitable
for fusion. In general, Chimera gains speedups by fusion
only when the second convolution in the convolution chain
is memory-bound. Usually, point-wise convolutions tend to
be memory-intensive when channel dimensions are small and
they are commonly used in the initial layers of CNNs (image
resolution is high and the channel feature size is small). But
other convolution layers (e.g., 3 × 3 convolution) are usually
compute-bound and are not suitable for fusion. We use case C6

in Table V to confirm this point by showing the performance
of fusing point-wise convolution with 3× 3 convolution. This
subgraph comes from ResNet [19]. As shown in Figure 6 part
c) and d), Chimera can’t obtain speedup for C6 compared
to Ansor because the second convolution is compute-bound.
But for other subgraphs, Chimera can consistently get better
performance than Ansor. For fusing convolution chain with
ReLU, the average speedup to Relay is 4.32×; the average
speedup to Ansor is 1.30×.

NPU Performance. At last, we evaluate the GEMM chains
on NPU. For all the GEMM chains, we use batch size 1.
Our baseline is the TBE library (Tensor Boost Engine) from
CANN [1]. TBE provides hand-optimized GEMM implemen-
tations for Ascend NPUs. It cannot fuse two GEMMs within
one kernel. Another baseline we compare to is AKG [56].
AKG can provide state-of-the-art performance on Ascend NPU
for GEMM and support various fusion strategies. But fusing
GEMM chain is not explored by AKG. As shown in Figure 7,
Chimera achieves 2.39× speedup to TBE on average. The
average speedup to AKG is 1.14×. For some cases, Chimera
doesn’t obtain speedup to AKG. The reason is that the NPU
we use has a small Unified Buffer to transfer intermediate
results of the first GEMM. When the GEMM becomes large,
the Unified Buffer becomes a bottleneck and slows down the
overall execution.

C. Memory Analysis and Model Validation

We also profile the kernels generated by Chimera to provide
insights into performance. We use CPU as target platform and
profile the kernels of batch GEMM chains. For this subgraph,
Chimera fuses the two batch GEMMs together. So we only
need to profile one kernel for Chimera. For PyTorch, it uses
two separate kernels and we have to profile the two batch
GEMM kernels for it separately. As shown in Figure 8 part
a) and b), the average L2 and L3 cache hit rates of Chimera
exceed those of PyTorch. PyTorch-1 refers to the first GEMM
PyTorch uses; and PyTorch-2 refers to the second GEMM
PyTorch uses. The high cache hit rate of Chimera means
that more data movement happens in fast cache (e.g., L1
and L2 cache), which is the source of speedups. We also
profile the data movement amount between different levels
of cache and find that the data movement between L2 and L3
cache is greatly reduced (by 59.75% on average) by Chimera
compared to PyTorch as shown in Figure 8 part c). Similarly,
the DRAM access of Chimera is reduced by 75.17% on
average. Meanwhile, the data movement of Chimera between
the L1 and L2 cache increases by 46% on average, which
corresponds to the inter-op data movement.

To validate the accuracy of our data movement model, we
profile the GEMM chain (M = N = K = L = 2048) for
three different cases and show the predicted and measured
data movement volume in Figure 8 part d)-f). For each case,
we profile hundreds of different decomposition factors (tiling
factors) and plot the corresponding data movement volume
in the Figure. The x-axis is the predicted volume from our
analytical model and the y-axis is the ground-truth measured

1121

Authorized licensed use limited to: Peking University. Downloaded on April 02,2023 at 12:59:04 UTC from IEEE Xplore. Restrictions apply.

!
"
#$
%&
'
"
()
"
*
+,
*
-
$
.
/
"

!"#$!%&'#()**#+,-.#/!%&'#()** /"#$!%&'#()**#+,-.#-0+%1!2 +,-.#/!%&'#()**

!
"
#$
%&
'
"
()
"
*
+,
*
-
$
.
/
"

&"#3045#+,-.#3045 6"#3045#+,-.#7.89 +,-.#3045

!

"

#

$

%

&' &" &(&# &) &$ &* &% &+ &'! &'' &'" &,-

!

"

#

$

%

&' &" &(&# &) &$ &* &% &+ &'! &'' &'" &,-

!

"

#

$

%

.' ." .(.# .) .$.* .% &,-

!

"

#

$

%

.' ." .(.# .) .$.* .% &,-

/012345 167- 89:;0 6<=23 19<=2381 1>?@.AB:;== .5CD93;

Fig. 6. The performance of fusing batch GEMM chains and fusing convolution chains on GPU.

R
e

la
ti

v
e

 P
e

r
fo

r
m

a
n

c
e

0

1

2

3

4

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 GEO

TBE AKG Chimera

Fig. 7. The performance of fusing GEMM chain on NPU.

using hardware profiling. The plots will be close to the line
y = x if our predication is accurate. We focus on the data
movement between L1 cache and L2 cache. For the case in
part d), we use the block execution order mlkn. The results
show that the predication accuracy is high and the correlation
between the ground-truth and predictions is also high (R2 =
0.97). We also show the predicted optimal data movement
using a red point in the Figure. The predicted value is close to
the ground-truth (the left bottom point in the Figure). For the
case in part e), we use another order mlnk. The predictions are
also accurate (R2 = 0.98). In part f), we use the order mlkn
but force the second GEMM not to reuse the intermediate
matrix C, which will result in more data movement. This case
is used to show that reusing intermediate data is also critical to
performance when generating fused kernels. Among the three
cases, the optimal order is mlkn with intermediate data reuse
in part d). This order is actually the optimal order found by
Chimera. Through this experiment, we show that our analytical
model is efficient and accurate.

D. End-to-end Performance

For full network performance evaluation, we use Trans-
former (referred to as TF), Bert, and ViT (batch size is 1). TF-
Small, TF-Base, TF-Large are three different configurations

for Transformers, the sequence length of which is set to
512. The batch GEMM chain input shapes for the different
configurations are shown in Table IV.

We use PyTorch with CuDNN enabled as baseline (de-
noted as PyTorch+CuDNN). We also compare Chimera to
TensorRT, CuDNN, and Ansor. Relay is able to invoke Ten-
sorRT and CuDNN directly (denoted Relay+TensorRT and
Relay+CuDNN). Ansor is integrated with Relay so we can use
Ansor to generate batch GEMM chain kernels without using
CuDNN (denoted as Relay+Ansor). We set Ansor to tune 1000
trials for each batch GEMM chain kernel. To compare the
performance of Chimera, we integrate Chimera with Relay
and replace the batch GEMM chain kernels of Relay with
those of Chimera (denoted as Relay+Chimera).

We use one A100 GPU as the target device. The perfor-
mance results are shown in Figure 9. Relay+Chimera is much
faster than PyTorch+CuDNN because Relay+Chimera uses
static graphs, while PyTorch uses dynamic graphs. Compared
to Relay+TensorRT, Relay+CuDNN, and Relay+Ansor, the
geometric speedups of Relay+Chimera are 1.42×, 1.31×,
and 1.22×, respectively. Relay+TensorRT is slower than the
other compilers because TensorRT can’t fuse the softmax layer
in the self-attention layer. Meanwhile, the batch GEMMs in
the networks are irregular, which is not well optimized in
TensorRT.

E. Discussion

Optimization Overhead. Chimera uses an analytical data
movement analysis for inter-block and intra-block optimiza-
tion. We compare the optimization overhead of Chimera
with the state-of-the-art optimizing compiler Ansor [57] using
batch GEMM chains on Intel Xeon Gold 6240 CPU. Ansor
uses hardware-profiling to train a cost model and then uses the
cost model to guide the exploration of the optimization space.

1122

Authorized licensed use limited to: Peking University. Downloaded on April 02,2023 at 12:59:04 UTC from IEEE Xplore. Restrictions apply.

0

0.2

0.4

0.6

0.8

1

G
1

G
2

G
3

G
4

G
5

G
6

G
7

G
8

G
9

G
1

0

G
1

1

G
1

2

G
E

O

a) L2 cache hit rate

0

0.2

0.4

0.6

0.8

1

G
1

G
2

G
3

G
4

G
5

G
6

G
7

G
8

G
9

G
1

0

G
1

1

G
1

2

G
E

O

b) L3 cache hit rate

H
it

 R
a

te

0

2

4

6

8

G
1

G
2

G
3

G
4

G
5

G
6

G
7

G
8

G
9

G
1

0

G
1

1

G
1

2

G
E

O

N
o

rm
a

li
ze

d

D
a

ta
 M

o
v
e

m
e

n
t

c) L2- L3 data movement

Chimera PyTorch-1 PyTorch-2 PyTorch-1 + PyTorch-2

M
e

a
su

re
d

 D
a

ta
 M

o
v
e

m
e

n
t

d) mlkn order, reuse matrix C e) mlnk order, reuse matrix C f) mlkn order, not reuse matrix C

predicted optimal

value
predicted optimal

value

predicted optimal

value

Fig. 8. Memory analysis and model validation of Chimera and PyTorch on CPU. We use batch GEMM chain as example.

R
e

la
ti

v
e

 P
e

rf
o

rm
a

n
ce

0

5

10

15

PyTorch+CuDNN Relay+TensorRT Relay+CuDNN Relay+Ansor Relay+Chimera

Fig. 9. The end-to-end network evaluation on A100 GPU
.

!
"
#
$
%
&'
(
)
*
+,
)
#
-"
#
$
%
.
/
)

!

!"#

!"$

!"%

!"&

'

(' (# () ($ (* (% (+ (& (, ('! ('' ('# (-.

/0123452 678 679 67: 67:98;<8=4>2?0@

Fig. 10. Ablation study results on CPU.

Chimera’s optimization is much faster than Ansor (21.89× on
average) and achieves 1.39× speedup because it estimates data
movement volume using analytical models before compilation.
In contrast, Ansor needs to profile the kernels on hardware
frequently during compilation.

Ablation Study. We perform an ablation study to show
the performance contribution of our cost model (C), fusion
techniques (F), and micro kernel (M), respectively. We use
batch GEMM chains for evaluation. The normalized perfor-
mance is shown in Figure 10. We prepare five versions of
Chimera. baseline is Chimera with cost model, fusion, and
micro kernel all disabled. For other versions, we use the
name C, F, M to indicate if the corresponding optimization

is enabled. For example, version v-C has only cost model
enabled; version v-F has only fusion optimizations enabled.
When cost model is disabled, Chimera randomly samples
100 candidate tiling factors for each block order and chooses
the best one by evaluating them on hardware. On average,
compared to baseline, cost model can bring 2.37× speedup,
fusion techniques can bring 1.89× speedup, and micro kernel
can bring 1.61× speedup. Collectively, cost model, fusion,
and micro kernel optimizations are all critical to final high
performance.

VII. RELATED WORK

Various hand-tuned libraries [2], [3], [5]–[7], [28], code gen-
eration compilers [12], [14], [23], [32], [35], [36], [43], [45],
[47], [49], [56], [57], [63], mappers [20], [21], [37], [55],
and accelerators [10], [18], [33], [44], [51] are developed to
improve the performance of machine learning models.

Library-based Fusion. Fusing compute-intensive operators
has been exploited by several previous works. Wang et al. [50]
empirically explore the fusion of convolution layers in CNNs.
Ashari et al. [11] propose to implement fused kernels for a spe-
cific computation pattern in machine learning. Although pro-
viding extremely high performance, these works rely on hand-
optimized kernels and is customized for specific workloads.
Liang et al. [29] propose to fuse GPU kernels both spatially
and temporally by threadblock interleaving to fully utilize
the hardware resources. Rammer [32] and Versapipe [62] use
persistent threadblocks to perform task scheduling for GPU
kernel launching. Astra [45] can fuse GEMM workloads in
RNNs. But it doesn’t generate low-level code and relies on
hand-tuned libraries. Li et al. [28] and TASO [23] can fuse
parallel convolutions to increase parallelism. However, they
can’t fuse convolutions with dependencies. BOLT [54] uses
Cutlass [7] template library to generate code for fused GEMM

1123

Authorized licensed use limited to: Peking University. Downloaded on April 02,2023 at 12:59:04 UTC from IEEE Xplore. Restrictions apply.

chains and convolution chains. Compared to these works,
Chimera doesn’t rely on external libraries and is more general
for new operators and accelerators.

Transformation-based Fusion. Recent compilers also use
loop transformation techniques to fuse operators. Halide [39]
provides primitives to support kernel fusion and uses auto-
schedulers [9], [34] to fuse kernels. But it focuses on image
processing pipelines and the operators are not as complex as
GEMM and convolution. TVM [14] uses different schedulers
AutoTVM [15], FlexTensor [61], and Ansor [57] to provide
fusion supports for memory-intensive operators. Fusion Stitch-
ing [64] and AStitch [63] enlarge the fusion scope by using
shared memory and global memory as the intermediate buffer.
However, they use compute-intensive operators as dividing
lines for fusion and don’t fuse compute-intensive operators
together, missing the opportunities for further fusion optimiza-
tions. NeoFlow [59] explicitly avoids the fusion of compute-
intensive operators because of its limited code generation
flexibility. DNNFusion [36] is designed for mobile devices
(e.g., ARM CPU and GPU). It fails to fuse compute-intensive
operators because its fusion algorithm always considers fusing
compute-intensive operators as non-beneficial. This rule gives
good results for mobile device, but is too conservative for
server-level accelerators because server-level accelerators have
larger on-chip memory, which provides more opportunities for
locality optimization for compute-intensive operator chains.

Hardware Accelerators and Mappers. Besides software
fusion works, many hardware solutions for fusion are pro-
posed. Xiao et al. [52] propose to fuse CNN layers and use
heterogeneous algorithms to accelerate the fused layers on
FPGA. FusedLayer [10], FixyNN [51], FixyFPGA [33], and
Tangram [18], Ascend [30] implement efficient accelerators
that can pipeline different DNN layers to gain inter-layer
and intra-layer parallelism. Although they provide efficient
hardware support for fusion, the performance of these ac-
celerators for real workloads depends on the quality of the
mappings between applications and hardware. Current map-
pers TimeLoop [37], Interstellar [55], Mind Mappings [20],
CoSA [21], HASCO [53], and AMOS [60] are designed for
perfect loop nests. However, fusion will produce imperfect
loop nests. As a result, these mappers cannot fully exploit the
high performance of the new accelerators. Chimera’s analysis
and optimizations are generally designed for the fusion of
compute-intensive operator chains, which are able to exploit
new hardware features for locality optimizations.

VIII. CONCLUSION

Generating fused kernels for compute-intensive operator
chains in machine learning models is beneficial for perfor-
mance. But the related optimizations in current libraries and
compilers are rudimentary and thus they can’t fully exploit
the performance of emerging hardware. In this paper, we
propose Chimera, an optimizing compiler that fuses memory-
bound compute-intensive operators. It optimizes inter-block
data movement and intra-block computations. It can generate
efficient fused kernels for improving locality. On CPU, GPU,

and NPU, the speedups to hand-tuned libraries are up to
2.87×, 2.29×, and 2.39×, respectively. Compared to state-
of-the-art compilers, the speedups are up to 2.29×, 1.64×,
and 1.14× for CPU, GPU, and NPU.

ACKNOWLEDGEMENTS

We thank all the anonymous reviewers for their suggestions.
This work is supported in part by the National Natural Science
Foundation of China (NSFC) under grant No. U21B2017 and
in part by Project 2020BD024 supported by PKU-Baidu Fund.

REFERENCES

[1] “Huawei Compute Architecture for Neural Networks (CANN),” https:
//e.huawei.com/hk/products/cloud-computing-dc/atlas/cann.

[2] “Intel oneAPI Deep Neural Network Library,” https://github.com/oneapi-
src/oneDNN.

[3] “Intel oneAPI Math Kernel Library,” https://software.intel.com/content/
www/us/en/develop/tools/oneapi/components/onemkl.html.

[4] “Nvidia Ampere Whitepaper,” https://www.nvidia.com/content/dam/en-
zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf.

[5] “Nvidia CuBLAS,” https://developer.nvidia.com/cublas.
[6] “Nvidia CuDNN,” https://developer.nvidia.com/cudnn.
[7] “Nvidia CUTLASS,” https://github.com/NVIDIA/cutlass.
[8] “Nvidia TensorRT,” https://docs.nvidia.com/deeplearning/tensorrt/

developer-guide/index.html.
[9] A. Adams, K. Ma, L. Anderson, R. Baghdadi, T. Li, M. Gharbi,

B. Steiner, S. Johnson, K. Fatahalian, F. Durand, and J. Ragan-Kelley,
“Learning to optimize halide with tree search and random programs,”
ACM Trans. Graph., vol. 38, no. 4, pp. 121:1–121:12, 2019. [Online].
Available: https://doi.org/10.1145/3306346.3322967

[10] M. Alwani, H. Chen, M. Ferdman, and P. A. Milder, “Fused-layer CNN
accelerators,” in 49th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 2016, Taipei, Taiwan, October 15-19, 2016.
IEEE Computer Society, 2016, pp. 22:1–22:12. [Online]. Available:
https://doi.org/10.1109/MICRO.2016.7783725

[11] A. Ashari, S. Tatikonda, M. Boehm, B. Reinwald, K. Campbell,
J. Keenleyside, and P. Sadayappan, “On optimizing machine learning
workloads via kernel fusion,” in Proceedings of the 20th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP
2015, San Francisco, CA, USA, February 7-11, 2015, A. Cohen and
D. Grove, Eds. ACM, 2015, pp. 173–182. [Online]. Available:
https://doi.org/10.1145/2688500.2688521

[12] R. Baghdadi, J. Ray, M. B. Romdhane, E. D. Sozzo, A. Akkas,
Y. Zhang, P. Suriana, S. Kamil, and S. P. Amarasinghe, “Tiramisu: A
polyhedral compiler for expressing fast and portable code,” CoRR, vol.
abs/1804.10694, 2018. [Online]. Available: http://arxiv.org/abs/1804.
10694

[13] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models
are few-shot learners,” arXiv preprint arXiv:2005.14165, 2020.

[14] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Q. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy,
“TVM: an automated end-to-end optimizing compiler for deep
learning,” in 13th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2018, Carlsbad, CA, USA,
October 8-10, 2018, 2018, pp. 578–594. [Online]. Available:
https://www.usenix.org/conference/osdi18/presentation/chen

[15] T. Chen, L. Zheng, E. Q. Yan, Z. Jiang, T. Moreau, L. Ceze,
C. Guestrin, and A. Krishnamurthy, “Learning to optimize tensor
programs,” in Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Processing Systems
2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada, 2018,
pp. 3393–3404. [Online]. Available: http://papers.nips.cc/paper/7599-
learning-to-optimize-tensor-programs

[16] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” CoRR,
vol. abs/1810.04805, 2018. [Online]. Available: http://arxiv.org/abs/
1810.04805

1124

Authorized licensed use limited to: Peking University. Downloaded on April 02,2023 at 12:59:04 UTC from IEEE Xplore. Restrictions apply.

[17] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words:
Transformers for image recognition at scale,” in 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021. [Online]. Available:
https://openreview.net/forum?id=YicbFdNTTy

[18] M. Gao, X. Yang, J. Pu, M. Horowitz, and C. Kozyrakis,
“TANGRAM: optimized coarse-grained dataflow for scalable NN
accelerators,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2019, Providence, RI, USA,
April 13-17, 2019, I. Bahar, M. Herlihy, E. Witchel, and A. R.
Lebeck, Eds. ACM, 2019, pp. 807–820. [Online]. Available:
https://doi.org/10.1145/3297858.3304014

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, 2016,
pp. 770–778. [Online]. Available: https://doi.org/10.1109/CVPR.2016.90

[20] K. Hegde, P. Tsai, S. Huang, V. Chandra, A. Parashar, and C. W.
Fletcher, “Mind mappings: enabling efficient algorithm-accelerator
mapping space search,” in ASPLOS ’21: 26th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, Virtual Event, USA, April 19-23, 2021,
T. Sherwood, E. Berger, and C. Kozyrakis, Eds. ACM, 2021, pp.
943–958. [Online]. Available: https://doi.org/10.1145/3445814.3446762

[21] Q. Huang, A. Kalaiah, M. Kang, J. Demmel, G. Dinh, J. Wawrzynek,
T. Norell, and Y. S. Shao, “Cosa: Scheduling by constrained
optimization for spatial accelerators,” in 48th ACM/IEEE Annual
International Symposium on Computer Architecture, ISCA 2021,
Valencia, Spain, June 14-18, 2021. IEEE, 2021, pp. 554–566.
[Online]. Available: https://doi.org/10.1109/ISCA52012.2021.00050

[22] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[23] Z. Jia, O. Padon, J. J. Thomas, T. Warszawski, M. Zaharia,
and A. Aiken, “TASO: optimizing deep learning computation with
automatic generation of graph substitutions,” in Proceedings of
the 27th ACM Symposium on Operating Systems Principles, SOSP
2019, Huntsville, ON, Canada, October 27-30, 2019, T. Brecht and
C. Williamson, Eds. ACM, 2019, pp. 47–62. [Online]. Available:
https://doi.org/10.1145/3341301.3359630

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25: 26th Annual Conference on Neural
Information Processing Systems 2012. Proceedings of a meeting held
December 3-6, 2012, Lake Tahoe, Nevada, United States, P. L. Bartlett,
F. C. N. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds.,
2012, pp. 1106–1114. [Online]. Available: http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks

[25] C. Lattner and V. S. Adve, “LLVM: A compilation framework
for lifelong program analysis & transformation,” in 2nd IEEE /
ACM International Symposium on Code Generation and Optimization
(CGO 2004), 20-24 March 2004, San Jose, CA, USA. IEEE
Computer Society, 2004, pp. 75–88. [Online]. Available: https:
//doi.org/10.1109/CGO.2004.1281665

[26] R. Li, Y. Xu, A. Sukumaran-Rajam, A. Rountev, and P. Sadayappan,
“Analytical characterization and design space exploration for
optimization of cnns,” CoRR, vol. abs/2101.09808, 2021. [Online].
Available: https://arxiv.org/abs/2101.09808

[27] R. Li, Y. Xu, A. Sukumaran-Rajam, A. Rountev, and P. Sadayappan,
“Analytical characterization and design space exploration for
optimization of cnns,” in ASPLOS ’21: 26th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, Virtual Event, USA, April 19-23, 2021,
T. Sherwood, E. Berger, and C. Kozyrakis, Eds. ACM, 2021, pp.
928–942. [Online]. Available: https://doi.org/10.1145/3445814.3446759

[28] X. Li, Y. Liang, S. Yan, L. Jia, and Y. Li, “A coordinated tiling and
batching framework for efficient GEMM on gpus,” in Proceedings of
the 24th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 2019, Washington, DC, USA, February
16-20, 2019, J. K. Hollingsworth and I. Keidar, Eds. ACM, 2019, pp.
229–241. [Online]. Available: https://doi.org/10.1145/3293883.3295734

[29] Y. Liang, H. P. Huynh, K. Rupnow, R. S. M. Goh, and D. Chen,
“Efficient GPU spatial-temporal multitasking,” IEEE Trans. Parallel
Distributed Syst., vol. 26, no. 3, pp. 748–760, 2015. [Online]. Available:
https://doi.org/10.1109/TPDS.2014.2313342

[30] H. Liao, J. Tu, J. Xia, H. Liu, X. Zhou, H. Yuan, and Y. Hu, “Ascend:
a scalable and unified architecture for ubiquitous deep neural network
computing : Industry track paper,” in IEEE International Symposium on
High-Performance Computer Architecture, HPCA 2021, Seoul, South
Korea, February 27 - March 3, 2021. IEEE, 2021, pp. 789–801.
[Online]. Available: https://doi.org/10.1109/HPCA51647.2021.00071

[31] T. M. Low, F. D. Igual, T. M. Smith, and E. S. Quintana-Orti,
“Analytical modeling is enough for high-performance blis,” ACM
Trans. Math. Softw., vol. 43, no. 2, aug 2016. [Online]. Available:
https://doi.org/10.1145/2925987

[32] L. Ma, Z. Xie, Z. Yang, J. Xue, Y. Miao, W. Cui, W. Hu, F. Yang,
L. Zhang, and L. Zhou, “Rammer: Enabling holistic deep learning
compiler optimizations with rtasks,” in 14th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 20), 2020, pp.
881–897.

[33] J. Meng, S. K. Venkataramanaiah, C. Zhou, P. Hansen, P. N.
Whatmough, and J. Seo, “Fixyfpga: Efficient FPGA accelerator for
deep neural networks with high element-wise sparsity and without
external memory access,” in 31st International Conference on Field-
Programmable Logic and Applications, FPL 2021, Dresden, Germany,
August 30 - Sept. 3, 2021. IEEE, 2021, pp. 9–16. [Online]. Available:
https://doi.org/10.1109/FPL53798.2021.00010

[34] R. T. Mullapudi, A. Adams, D. Sharlet, J. Ragan-Kelley, and
K. Fatahalian, “Automatically scheduling halide image processing
pipelines,” ACM Trans. Graph., vol. 35, no. 4, pp. 83:1–83:11, 2016.
[Online]. Available: https://doi.org/10.1145/2897824.2925952

[35] S. Nakandala, K. Saur, G. Yu, K. Karanasos, C. Curino, M. Weimer,
and M. Interlandi, “A tensor compiler for unified machine learning
prediction serving,” CoRR, vol. abs/2010.04804, 2020. [Online].
Available: https://arxiv.org/abs/2010.04804

[36] W. Niu, J. Guan, Y. Wang, G. Agrawal, and B. Ren, “Dnnfusion:
accelerating deep neural networks execution with advanced operator
fusion,” in PLDI ’21: 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, Virtual Event,
Canada, June 20-25, 2021, S. N. Freund and E. Yahav, Eds.
ACM, 2021, pp. 883–898. [Online]. Available: https://doi.org/10.1145/
3453483.3454083

[37] A. Parashar, P. Raina, Y. S. Shao, Y. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, and J. S. Emer,
“Timeloop: A systematic approach to DNN accelerator evaluation,”
in IEEE International Symposium on Performance Analysis of
Systems and Software, ISPASS 2019, Madison, WI, USA, March
24-26, 2019. IEEE, 2019, pp. 304–315. [Online]. Available:
https://doi.org/10.1109/ISPASS.2019.00042

[38] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An
imperative style, high-performance deep learning library,” in Advances
in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019,
8-14 December 2019, Vancouver, BC, Canada, 2019, pp. 8024–
8035. [Online]. Available: http://papers.nips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library

[39] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. P. Amarasinghe, “Halide: a language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines,”
in ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19,
2013, 2013, pp. 519–530. [Online]. Available: https://doi.org/10.1145/
2491956.2462176

[40] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You
only look once: Unified, real-time object detection,” in 2016 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016, 2016, pp. 779–788. [Online].
Available: https://doi.org/10.1109/CVPR.2016.91

[41] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[42] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN:
towards real-time object detection with region proposal networks,”
in Advances in Neural Information Processing Systems 28: Annual

1125

Authorized licensed use limited to: Peking University. Downloaded on April 02,2023 at 12:59:04 UTC from IEEE Xplore. Restrictions apply.

Conference on Neural Information Processing Systems 2015, December
7-12, 2015, Montreal, Quebec, Canada, C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, Eds., 2015, pp. 91–
99. [Online]. Available: http://papers.nips.cc/paper/5638-faster-r-cnn-
towards-real-time-object-detection-with-region-proposal-networks

[43] J. Roesch, S. Lyubomirsky, M. Kirisame, J. Pollock, L. Weber, Z. Jiang,
T. Chen, T. Moreau, and Z. Tatlock, “Relay: A high-level IR for
deep learning,” CoRR, vol. abs/1904.08368, 2019. [Online]. Available:
http://arxiv.org/abs/1904.08368

[44] Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang,
B. Keller, A. Klinefelter, N. R. Pinckney, P. Raina, S. G. Tell,
Y. Zhang, W. J. Dally, J. S. Emer, C. T. Gray, B. Khailany, and
S. W. Keckler, “Simba: Scaling deep-learning inference with multi-
chip-module-based architecture,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO
2019, Columbus, OH, USA, October 12-16, 2019. ACM, 2019, pp.
14–27. [Online]. Available: https://doi.org/10.1145/3352460.3358302

[45] M. Sivathanu, T. Chugh, S. S. Singapuram, and L. Zhou, “Astra:
Exploiting predictability to optimize deep learning,” in Proceedings of
the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2019,
Providence, RI, USA, April 13-17, 2019, I. Bahar, M. Herlihy,
E. Witchel, and A. R. Lebeck, Eds. ACM, 2019, pp. 909–923.
[Online]. Available: https://doi.org/10.1145/3297858.3304072

[46] I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai,
T. Unterthiner, J. Yung, A. Steiner, D. Keysers, J. Uszkoreit,
M. Lucic, and A. Dosovitskiy, “Mlp-mixer: An all-mlp architecture
for vision,” CoRR, vol. abs/2105.01601, 2021. [Online]. Available:
https://arxiv.org/abs/2105.01601

[47] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito,
W. S. Moses, S. Verdoolaege, A. Adams, and A. Cohen, “Tensor
comprehensions: Framework-agnostic high-performance machine
learning abstractions,” CoRR, vol. abs/1802.04730, 2018. [Online].
Available: http://arxiv.org/abs/1802.04730

[48] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, pp. 5998–6008, 2017.

[49] M. Wahib and N. Maruyama, “Scalable kernel fusion for memory-bound
GPU applications,” in International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2014, New Orleans,
LA, USA, November 16-21, 2014, T. Damkroger and J. J. Dongarra,
Eds. IEEE Computer Society, 2014, pp. 191–202. [Online]. Available:
https://doi.org/10.1109/SC.2014.21

[50] X. Wang, G. Li, X. Dong, J. Li, L. Liu, and X. Feng, “Accelerating deep
learning inference with cross-layer data reuse on gpus,” in Euro-Par
2020: Parallel Processing - 26th International Conference on Parallel
and Distributed Computing, Warsaw, Poland, August 24-28, 2020,
Proceedings, ser. Lecture Notes in Computer Science, M. Malawski
and K. Rzadca, Eds., vol. 12247. Springer, 2020, pp. 219–233.
[Online]. Available: https://doi.org/10.1007/978-3-030-57675-2\ 14

[51] P. N. Whatmough, C. Zhou, P. Hansen, S. K. Venkataramanaiah,
J. Seo, and M. Mattina, “Fixynn: Energy-efficient real-time mobile
computer vision hardware acceleration via transfer learning,” in
Proceedings of Machine Learning and Systems 2019, MLSys 2019,
Stanford, CA, USA, March 31 - April 2, 2019, A. Talwalkar,
V. Smith, and M. Zaharia, Eds. mlsys.org, 2019. [Online]. Available:
https://proceedings.mlsys.org/book/281.pdf

[52] Q. Xiao, Y. Liang, L. Lu, S. Yan, and Y. Tai, “Exploring
heterogeneous algorithms for accelerating deep convolutional neural
networks on fpgas,” in Proceedings of the 54th Annual Design
Automation Conference, DAC 2017, Austin, TX, USA, June 18-
22, 2017. ACM, 2017, pp. 62:1–62:6. [Online]. Available: https:
//doi.org/10.1145/3061639.3062244

[53] Q. Xiao, S. Zheng, B. Wu, P. Xu, X. Qian, and Y. Liang,
“HASCO: towards agile hardware and software co-design for tensor
computation,” in 48th ACM/IEEE Annual International Symposium
on Computer Architecture, ISCA 2021, Valencia, Spain, June
14-18, 2021. IEEE, 2021, pp. 1055–1068. [Online]. Available:
https://doi.org/10.1109/ISCA52012.2021.00086

[54] J. Xing, L. Wang, S. Zhang, J. Chen, A. Chen, and Y. Zhu,
“Bolt: Bridging the gap between auto-tuners and hardware-native
performance,” in Proceedings of Machine Learning and Systems
2022, MLSys 2022, Santa Clara, CA, USA, August 29 - September

1, 2022, D. Marculescu, Y. Chi, and C. Wu, Eds. mlsys.org,
2022. [Online]. Available: https://proceedings.mlsys.org/paper/2022/
hash/38b3eff8baf56627478ec76a704e9b52-Abstract.html

[55] X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell, K. Cao,
H. Ha, P. Raina, C. Kozyrakis, and M. Horowitz, “Interstellar: Using
halide’s scheduling language to analyze DNN accelerators,” in ASPLOS
’20: Architectural Support for Programming Languages and Operating
Systems, Lausanne, Switzerland, March 16-20, 2020, J. R. Larus,
L. Ceze, and K. Strauss, Eds. ACM, 2020, pp. 369–383. [Online].
Available: https://doi.org/10.1145/3373376.3378514

[56] J. Zhao, B. Li, W. Nie, Z. Geng, R. Zhang, X. Gao, B. Cheng, C. Wu,
Y. Cheng, Z. Li, P. Di, K. Zhang, and X. Jin, “AKG: automatic
kernel generation for neural processing units using polyhedral
transformations,” in PLDI ’21: 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation,
Virtual Event, Canada, June 20-25, 20211, S. N. Freund and
E. Yahav, Eds. ACM, 2021, pp. 1233–1248. [Online]. Available:
https://doi.org/10.1145/3453483.3454106

[57] L. Zheng, C. Jia, M. Sun, Z. Wu, C. H. Yu, A. Haj-Ali,
Y. Wang, J. Yang, D. Zhuo, K. Sen, J. E. Gonzalez, and
I. Stoica, “Ansor: Generating high-performance tensor programs for
deep learning,” in 14th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2020, Virtual Event, November 4-6,
2020. USENIX Association, 2020, pp. 863–879. [Online]. Available:
https://www.usenix.org/conference/osdi20/presentation/zheng

[58] S. Zheng, X. Zhang, L. Liu, S. Wei, and S. Yin, “Atomic
dataflow based graph-level workload orchestration for scalable
DNN accelerators,” in IEEE International Symposium on High-
Performance Computer Architecture, HPCA 2022, Seoul, South Korea,
April 2-6, 2022. IEEE, 2022, pp. 475–489. [Online]. Available:
https://doi.org/10.1109/HPCA53966.2022.00042

[59] S. Zheng, R. Chen, Y. Jin, A. Wei, B. Wu, X. Li, S. Yan, and Y. Liang,
“Neoflow: A flexible framework for enabling efficient compilation for
high performance dnn training,” IEEE Transactions on Parallel and
Distributed Systems, 2021.

[60] S. Zheng, R. Chen, A. Wei, Y. Jin, Q. Han, L. Lu, B. Wu, X. Li,
S. Yan, and Y. Liang, “AMOS: enabling automatic mapping for tensor
computations on spatial accelerators with hardware abstraction,” in
ISCA ’22: The 49th Annual International Symposium on Computer
Architecture, New York, New York, USA, June 18 - 22, 2022,
V. Salapura, M. Zahran, F. Chong, and L. Tang, Eds. ACM, 2022, pp.
874–887. [Online]. Available: https://doi.org/10.1145/3470496.3527440

[61] S. Zheng, Y. Liang, S. Wang, R. Chen, and K. Sheng, “Flextensor:
An automatic schedule exploration and optimization framework for
tensor computation on heterogeneous system,” in ASPLOS ’20:
Architectural Support for Programming Languages and Operating
Systems, Lausanne, Switzerland, March 16-20, 2020 [ASPLOS 2020
was canceled because of COVID-19], J. R. Larus, L. Ceze, and
K. Strauss, Eds. ACM, 2020, pp. 859–873. [Online]. Available:
https://doi.org/10.1145/3373376.3378508

[62] Z. Zheng, C. Oh, J. Zhai, X. Shen, Y. Yi, and W. Chen, “Versapipe:
a versatile programming framework for pipelined computing on
GPU,” in Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 2017, Cambridge, MA, USA,
October 14-18, 2017, H. C. Hunter, J. Moreno, J. S. Emer, and
D. Sánchez, Eds. ACM, 2017, pp. 587–599. [Online]. Available:
https://doi.org/10.1145/3123939.3123978

[63] Z. Zheng, X. Yang, P. Zhao, G. Long, K. Zhu, F. Zhu, W. Zhao,
X. Liu, J. Yang, J. Zhai, S. L. Song, and W. Lin, “Astitch: enabling
a new multi-dimensional optimization space for memory-intensive
ML training and inference on modern SIMT architectures,” in
ASPLOS ’22: 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Lausanne,
Switzerland, 28 February 2022 - 4 March 2022, B. Falsafi, M. Ferdman,
S. Lu, and T. F. Wenisch, Eds. ACM, 2022, pp. 359–373. [Online].
Available: https://doi.org/10.1145/3503222.3507723

[64] Z. Zheng, P. Zhao, G. Long, F. Zhu, K. Zhu, W. Zhao, L. Diao, J. Yang,
and W. Lin, “Fusionstitching: boosting memory intensive computations
for deep learning workloads,” arXiv preprint arXiv:2009.10924, 2020.

[65] H. Zhu, R. Wu, Y. Diao, S. Ke, H. Li, C. Zhang, J. Xue, L. Ma,
Y. Xia, W. Cui et al., “{ROLLER}: Fast and efficient tensor compilation
for deep learning,” in 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22), 2022, pp. 233–248.

1126

Authorized licensed use limited to: Peking University. Downloaded on April 02,2023 at 12:59:04 UTC from IEEE Xplore. Restrictions apply.

