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Abstract

Large Language Models (LLMs) are widely used in today’s tasks of natural lan-
guage processing. To support applications like multi-turn chats, document under-
standing, and content generation, models with long context lengths are growing in
importance. However, managing long contexts brings substantial challenges due to
the expansion of key-value cache (KV cache). Longer KV cache requires larger
memory, limiting the batch-size and thus decreasing throughput. Also, computing
attention over long KV cache incurs more memory access, hurting the end-to-end
latency. Prior works find that it is sufficient to use only the recent and high-impact
tokens for attention computation, allowing the eviction of less vital tokens to
reduce memory footprint. Nonetheless, we observe a dynamic shift in token im-
portance across different decoding steps. Tokens initially evicted might regain
importance after certain decoding steps. To address this, we propose ARKVALE,
a page-based KV cache manager that can recognize and recall important tokens
evicted before. We asynchronously copy the filled page into external memory
(e.g., CPU memory) as backup and summarize/compress it into a much smaller
digest by constructing the bounding-volume of the keys in the KV-page. Before
attention computation, we measure all pages’ importance based on their digests,
recall the important ones, evict the unimportant ones, and select the top-ranked
pages for attention computation. Experiment results show that ARKVALE performs
well on various long context tasks with negligible accuracy loss under 2k∼4k
cache budget and can improve decoding latency up to 2.2× (1.7× in average) and
batching throughput up to 4.6× (3.5× in average). Our code is now available at
https://github.com/pku-liang/ArkVale.
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Figure 1: Comparison of different KV cache eviction works.

1 Introduction

Large Language Models (LLMs) are rapidly gaining universal presence, underpinning a myriad
of natural language processing applications, including dialogue systems [2, 52, 16], document
summarization [62, 24], code completion [13, 46], and question answering [31]. The context length
supported by large models is also growing progressively to support more applications like multi-turn
chat [2, 52, 16] and text summarization [28, 68, 22]. This shift has seen an expansion from an initial
range of up to 16k, advancing steadily towards lengths of 32k [1], 128k [43], and even 2048k [21].

However, handling long contexts poses significant challenges. The key-value cache (KV cache) of
LLMs scales with both the batch size and the length of historical context. For each token generated
by an LLM, the query must attend to the entire set of context key-values. On one hand, longer KV
caches occupy more memory spaces, limiting batch-size as well as throughput. On the other hand,
computing attention with long KV cache incurs more memory accesses, hurting the inference latency.

Previous works [58, 64, 37, 23, 40, 6] reveal sparsity in KV cache, which means that only a subset of
tokens in the KV cache significantly influence the accuracy of attention computation. They propose
two characteristics of token importance: locality and persistence. Locality implies that recent tokens
tend to be important for current attention, while persistence suggests that tokens previously deemed
important are likely to retain their importance over time. They devise algorithms to retain recent
tokens [58, 37, 64] (Figure 1 (b)) or vital tokens [58, 37, 64, 40, 23, 6] (Figure 1 (b)) while evicting
older or less crucial ones to reduce memory usage of KV cache and memory accesses of attention.

In this work, we delve deeper into the dynamism of token importance, observing that tokens previously
deemed unimportant may regain importance over time and vice versa. Previous works ignore this
and may risk permanently discarding the tokens that are vital later on, inadvertently decreasing
model accuracy. To address these challenges, we propose ARKVALE, inspired by vLLM [36] to
organize tokens into pages for fine-grained management of KV cache. Upon filling a KV-page,
we asynchronously copy it to CPU memory as a backup, and summarize/compress it into a much
smaller digest by constructing a bounding-volume of the keys of the KV-page. Before each attention
computation, we dynamically estimate the importance of each page based on their digests and current
query, and selectively recall & evict some pages based on their importance scores (Figure 1 (d)).

Our contribution can be summarized as follows:

• We characterize the dynamism of the importance of tokens in the KV cache of LLM, and
find that some unimportant tokens may regain importance over time.

• We propose ARKVALE, a KV cache manager which organize tokens into pages and dynami-
cally evict & recall them based on their importance.

• We propose a method based on bounding-volume to summarize the pages and estimate the
importance of them with a given query.

We evaluate ARKVALE against many state-of-the-art KV cache eviction works on various long-
context benchmarks. Experimental results show ARKVALE performs well on all the long context
tasks with negligible accuracy loss under a cache budget of 2k∼4k and speedup model decoding
latency up to 2.2× (1.7× in average) and batching throughput up to 4.6× (3.5× in average) in long
context scenarios. Our code is now available at https://github.com/pku-liang/ArkVale.
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2 Related Work

Many works have been proposed to extend context window of pre-trained models. One prevalent
method is the integration of Rotary Position Embeddings (RoPE) [49]. Fine-tuning RoPE’s scaling
enables the Llama-2 model [55], initially handling 4k tokens, to be expanded to support 32k tokens in
LongChat [1] and 128k tokens in Yarn-Llama-2 [43]. Recently, LongRoPE [21] pushes this boundary
even further to accommodate up to 2048k tokens. However, as models become more capable of
dealing with long context, they also face new challenges in terms of memory usage and inference
efficiency. ARKVALE is designed to address such issues.

Some training-aware methods have been proposed to handle these problems. Multi-Query Attention
(MQA) [47] and Group-Query Attention (GQA) [7] aim to train LLMs with fewer attention heads in
KV cache. Works like RWKV [42], RetNet [50], and Mamba [25] propose Linear Attention/RNN to
limit KV cache size. Sparse attention architectures [61, 10, 56, 17, 45, 33, 53] design special sparse
pattern of attention during training to control the KV cache size during inference. But these works
require much training effort for pre-training or fine-tuning while ARKVALE is a training-free method.

There are also some post-training methods, which evict tokens in KV cache to reduce memory usage
and accelerate attention computation. StreamingLLM [58] and LM-Infinite [26] only keep initial
tokens and recent tokens to maintain a fixed-size KV cache. Methods like H2O [64], Scissorhands [37]
and TOVA [40] keep important tokens in KV cache based on the historical or current attention scores.
FastGen [23] categorizes tokens and employs a more nuanced approach for choosing which KV
cache tokens to preserve. Keyformer [6] improves the eviction score function by leveraging the
Gumbel distribution. Q-Hitter [63] combines KV-cache quantization with KV-cache eviction. These
methods rely on historical data to dictate cache eviction and may risk discarding the tokens that
are important in the future. Works like IceFormer [38], SparQ [5], ALISA [65], and Quest [51]
use post-training sparse attention to alleviate such issue but they require all KV cache residing in
memory and thus cannot control KV cache size to optimize memory usage. Many scheduling-based
methods [19, 18, 60, 15, 66, 14, 36, 48, 32, 27, 67] are also employed to optimize memory efficiency
for LLMs or other DNNs, aiming to enhance memory usage and execution latency through proper
computation partitioning and scheduling.

3 Background

3.1 Attention Computation and Generative Inference of LLM

The attention computation in a typical LLM involves mixing token-level information of queries
Q ∈ Rsq×d and keys K ∈ Rskv×d with values V ∈ Rskv×d, where d is the hidden-dimension and
sq (skv) means the number of query (key/value) tokens. The attention computation can be formulated
as: S := (Q ·K⊤/

√
d) ∈ Rsq×skv , P := softmax(S) ∈ Rsq×skv , O := (P ·V) ∈ Rsq×d, where

P is often called "attention map/scores" and Pi,j reflects the importance of key/value token j to
query token i. Then, the generative inference process of LLM mainly consists of two stages: the
prefill/prompt stage and the decoding/generation stage. The prefill stage takes a prompt sequence
with length sin as input and caches the keys & values computed by each layer of the LLM. The
decoding stage uses and updates the KV cache to generate tokens step-by-step, where the current
token depends on past tokens’ keys & values stored in the KV cache. For the attention in prefill stage,
sin = sq = skv , while sq = 1 and skv = #past-tokens + 1 in each decoding step.

3.2 Impact of Long Context

For a decoding step with batch-size as b, number of transformer layers as l, history sequence length
as s, hidden-dimension as h, and data type as float16, the KV cache requires 4bsh bytes memory
accesses for each attention computation and occupies 4blsh bytes of memory in total. The latency
& memory breakdown of a decoding step of model LongChat-7b-v1.5-32k [1] (l = 32, h = 4096)
with b = 8 and s = 29, 210, 211, 212, 213, 214, 215 is shown in Figure 2. As the sequence length
increases, accessing the KV cache incurs significant overhead, thereby impacting the end-to-end
latency of inference. Besides, as the sequence length increases, the KV cache itself consumes more
memory space; for instance, with just a context length of 16k, a batch size of 8 nearly saturates the
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Figure 2: Latency & memory breakdown of a decoding step of LongChat-7b-v1.5-32k model with
batch-size b = 8 and different history sequence-lengths s = 29, 210, 211, 212, 213, 214, 215.

80GB memory of an A100 GPU. This not only hampers the use of larger batch sizes but also poses
challenges for deploying models with more parameters.

4 Observation

4.1 Token-level Sparsity of KV Cache

To tackle the aforementioned issues, we aim to exploit the sparsity of the KV cache. We collect data
by running LongChat-7b-v1.5-32k [1] on LongBench [9]. Figure 3 illustrates the sparsity of the KV
caches of different layers. We organize the tokens in KV cache into pages (with page-size=32), and
rank the pages of each layer based on the highest attention scores of the tokens within each page for
each decoding step. We can observe that, in each layer except the initial one, less than 10 pages (320
tokens) contribute more than 99% scores in sum, achieving over 95% sparsity. Thus we can retain
only a subset of KV tokens for attention.
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Figure 3: Token-level sparsity of KV cache. We organize the tokens in KV cache into pages (with
page-size=32) and rank the pages of each layer based on the highest attention (softmax) scores of the
tokens within each page.

4.2 Dynamism of Token Importance

Previous efforts leverage the sparsity of KV cache to control its size by retaining recent tokens while
discarding older ones or selectively evicting less important tokens based on their historical attention
scores, shown in Figure 1 (b) (c). However, we find that the importance of tokens in the KV cache
can dynamically change over time, as shown in Figure 4a. For example, page 256 initially holds
little importance but later becomes crucial, with its significant role (at position 12620) occurring
nearly 4500 tokens after its sequence position (at position 8192). Previous methods risk prematurely
discarding such pages to save KV cache space. To address this, we propose ARKVALE, a shown
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Figure 4: (a) Dynamsim of token (page) importance (page-size=32). The sample is from GovRe-
port [28]. (b) Number of page-recalls (in average) needed during a decoding step with page-size=32.

in Figure 1 (d), a method designed to recognize shifts in token importance and properly recall vital
tokens as well as evict unimportant ones, thereby preventing substantial drops in accuracy.

5 Techniques of ARKVALE

5.1 System Design

Figure 5 shows the design of ARKVALE. Inspired by vLLM [36], ARKVALE arranges KV cache
tokens into pages, enabling coarse-grained management of tokens. As shown in Figure 5 (a), once
a page is filled, its keys & values are asynchronously moved from GPU to external memory (CPU
memory typically) for backup, with keys summarized into a digest kept on the GPU (explained in
§ 5.2). Prior to attention computation, ARKVALE gauges the importance of each page (whether
cached or evicted), using the query and page digests (Figure 5 (b), detailed in § 5.2), and subsequently
ranks these pages (Figure 5 (c)) based on their importance scores. The top-k pages (governed by a
hyper-parameter k) must engage in attention computation (Figure 5 (e)). If any top-k pages were
evicted before, they will be recalled from backup, and bottom-ranked pages in GPU will be evicted
for exchange (Figure 5 (d)).

Depending on the cache-size and the number of pages selected for attention, the overhead of page
recall may be different. To validate the feasibility of our approach and ensure that recalls do not incur
excessive overhead, we uniformly sample four instances from each dataset included in LongBench [9]
and gather data from the inference process of LongChat-7b-v1.5-32k [1] to simulate eviction and
recall scenarios. We configure the page-size p = 32 and vary both the cache capacity c (pages) and
the attention size k (the number of top-ranked pages selected for attention). The results, depicted
in Figure 4b, reveal that as long as k < min(40, c/2), we can limit the number of recalls per
decoding step to under 10, amounting to a total of 5 MB of data transfer. This transfer takes merely
hundreds of microseconds over contemporary CPU-GPU communication interfaces, which is one
or two orders of magnitude faster than the end-to-end latency of each decoding step (usually a few
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Figure 5: Design overview of ARKVALE

to tens of milliseconds in long context scenarios on NVIDIA A100 GPU). Thus, for page-size p
and cache-capacity c (tokens), we set k = min(C, c/2)/p, where C is a hyper-parameters (default
C = 40 ∗ 32 = 1280).

5.2 Page Summarization & Importance Estimation

(a) Bounding-sphere need to record the center c
and the radius r.

(b) Bounding-cuboid need to record the max-vector b(2) =

max5
i=1 k

(i) and the min-vector b(4) = min5
i=1 k

(i).

Figure 6: Summarize page keys {k(i)}5i=1 into their bounding-volume (sphere/cuboid). We can
estimate the max-dot-product between query q and keys {k(i)}5i=1 using the bounding-volume.

For every filled page, we maintain a digest as a compression of it. The digest is much smaller than the
page itself, and can be used to estimate the importance of each page regardless of whether the page
has been evicted before attention computation. This estimation enables us to rank pages to selectively
recall or evict pages based on their importance.

Given a page with n keys K = {k(i)}ni=1 (k(i) ∈ Rd), and a query q ∈ Rd, we measure its
importance using the maximum dot product between the query and the keys:I(q,K) = maxk∈K q·k.
For two sets of keys, K1 and K2, I(q,K1) > I(q,K2) implies that there’s at least one token in K1

with higher attention (softmax) scores compared to every token in K2.
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It’s evident that argmaxk∈Kq · k must lie on a vertex of the convex hull of the point set K. Hence,
we can approximate I(q,K) by constructing a convex covering set of K. We leverage the concept
of bounding-volume [3, 34] to summarize the keys K of a page. A bounding-volume for a set of
points is a closed region that completely contains all of them, which is widely used in computer
graphics [34, 29, 11, 12].

Bounding-sphere. We can cover the keys K with a sphere, needing to store only a center c ∈ Rd

and a radius r ∈ R as the digest. Given a query q ∈ Rd, we can estimate the importance I(q,K)
leveraging c and r. Among the points k′ on the surface of the sphere, those for which k′ − c is
parallel to q yield the maximum dot product with q. Thus we have k′ = r

|q|q, leading to:

I(q,K) = max
k∈K

q · k ≈ q · (c+ r

|q|
q) = q · c+ r|q| (1)

An example is shown in Figure 6a. Finding the minimal bounding sphere is complicated; hence, we
employ an efficient approximation method: we take the center of the Axis-Aligned Bounding Box
(AABB) [12, 11] of K as our sphere center: c = 1

2 (mink∈K k + maxk∈K k) (min and max are
element-wise operations in this paper). For the radius r, three alternatives are considered:

rmax = max
k∈K

|c− k| rcenter =
1

2
(min
k∈K

|c− k|+ rmax) rmean =
1

|K|
∑
k∈K

|c− k| (2)

where |...| means L2-norm. Strictly speaking, only rmax guarantees to enclose all points in K, but the
latter two can avoid overestimating I(q,K) in practice, as shown in Figure 7 and discussed in §6.2.

Bounding-cuboid. We can also cover the keys K directly using an Axis-Aligned Bounding Box
(AABB) [12, 11]. It needs to store the max-vector bmax = maxk∈K k and min-vector bmin =
mink∈K k as the digest. Given a query vector q ∈ Rd, we can estimate the importance I(q,K) of K
with the boundaries of the box. This is achieved by summing the maximum product by the boundary
values and q across all dimensions:

I(q,K) = max
k∈K

q · k ≈
d∑

i=1

max
k∈K

qiki =

d∑
i=1

max(qib
max
i ,qib

min
i ) = 1 ·max(q⊙bmax,q⊙bmin)

(3)
Here, 1 ∈ Rd denotes a vector of ones, and ⊙ means element-wise multiplication. An example
is shown in Figure 6b. Similar to the bounding-sphere approach, we can employ different "radius
vectors" to define cuboids with varying sizes:

rmax = max
k∈K

abs(c−k) rcenter =
1

2
(min
k∈K

abs(c−k)+ rmax) rmean =
1

|K|
∑
k∈K

abs(c−k) (4)

where abs(...) computes element-wise absolute values. For each r, we can derive bmax = c+ r and
bmin = c− r, where c = 1

2 (mink∈K k+maxk∈K k) is the center of the AABB of K.

6 Evaluation

6.1 Experimental Setup

We apply our method to LongChat-7b-v1.5-32k [1] and use 6 datasets from LongBench [9] for
benchmarking: HotpotQA [59], NarrativeQA [35], Qasper [20], GovReport [28], TriviaQA [30],
and PassageRetrieval [9], along with the passkey-retrieval tasks. For comparison, we choose the
state-of-the-art KV cache eviction methods including StreamingLLM [58], H2O [64], and TOVA [40]
as baselines. As Figure 3 illustrates, the initial layers exhibit relatively low sparsity; hence, we do not
apply ARKVALE and baselines to the first two layers of model.

Our experiment platform comprises an Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz and an NVIDIA
A100 80GB PCIe GPU. The software stack includes CUDA version 12.3, PyTorch [41, 8] version
2.3.0, and HuggingFace Transformers [57] version 4.40.0. We implement ARKVALE on top of
Huggingface Transformers, with CUTLASS [54], FlashInfer [60], and RAFT [44] for certain kernels.
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Figure 7: Recall accuracy (the proportion of pages predicted to be among the top-k that indeed belong
to the top-k) of different estimation methods. "Centroid" is the baseline which just uses the centroid
of keys to estimate the max-dot-product with given query.

6.2 Estimation Accuracy

We begin by evaluating the accuracy of the page summarization & importance estimation methods
discussed in §5.2. Using data from the LongBench [9] datasets employed in our experiments, we
simulate each decoding step to collect both the actual page rankings and the estimated rankings derived
using the digests. For varying values of k, we define recall accuracy as the proportion of overlap
between the estimated top-k page set Ek and the true top-k page set Rk, that is: |Ek ∩Rk|/|Rk|.
Figure 7 illustrates the recall accuracy of different estimation techniques across various k values. The
"centroid" method, which uses the centroid [4] (element-wise average of keys) of page keys as the
digest and estimates page importance by directly taking the dot product of the query and the centroid,
serves as a straightforward baseline. Other methods are the six introduced in §5.2: spheres with rmax,
rcenter, and rmean as well as cuboids with rmax, rcenter, and rmean. As shown in Figure 7, the centroid
method cannot recall the top-4 pages with even 50% accuracy and achieves less than 5% accuracy in
recalling the top-1 page, substantially undermining inference accuracy. Conversely, our six proposed
methods guarantee at least a 60% recall accuracy, with the standout cuboid-mean method ensuring
a 95% accuracy for top-1 recall and consistently over 80% for other k values. The cuboid-based
methods generally outperform their sphere-based counterparts due to more retained information (two
vectors for cuboids versus one vector and a scalar for spheres). Furthermore, the "mean" variants tend
to perform better than others, potentially because they provide a more balanced boundary estimation,
avoiding overestimation of page importance.

6.3 LongBench Results

Next, we evaluate the accuracy of ARKVALE in general long-context tasks. We employ 6 datasets
from LongBench [9] as benchmarks, covering tasks such as multi-document QA with HotpotQA [59],
single-document QA with NarrativeQA [35], and Qasper [20], text summarization with GovRe-
port [28], few-shot learning with TriviaQA [30], and synthetic tasks with PassageRetrieval [9]. The
target model is LongChat-7b-v1.5-32k [1]. Our comparison baselines include the original model
and the state-of-the-art KV cache eviction methods: StreamingLLM [58], H2O [64], and TOVA [40].
We configure four cache budget settings: 4096, 2048, 1024, and 512. Notably, H2O and TOVA’s
original implementations require the full attention scores matrix to maintain states, preventing the use
of optimizations like Flash-Attention [19] in prefill stage and causing Out-of-Memory (OOM) for
many benchmark samples. To address this, we split each input into context and question/instruction
sections and adopt a two-phase prefill: the first phase uses Flash-Attention [19] to handle the lengthy
context without OOM (while we also separately compute the last row of attention scores for H2O
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Figure 8: Evaluation on 6 long-context datasets in LongBench [9] with different cache budgets.

and TOVA’s initial states update with little memory overhead), and the second phase uses brutal-force
attention to process the shorter instruction, ensuring a complete score matrix for H2O and TOVA’s
states updates. This approach can also better demonstrate the long-range dependencies handling
abilities of each method.

Figure 8 shows the results, where ARKVALE-16 and ARKVALE-32 represent ARKVALE with page-
sizes of 16 and 32, respectively. ARKVALE persistently surpasses baselines across datasets and cache
budgets. It nearly equals Origin’s performance with budgets over 2048, while other baselines show
noticeable disparities when the budget dips below 2048 and even 4096. Specifically, ARKVALE
achieves comparable results to Origin at budgets of 1024 for HotpotQA, 2048 for NarrativeQA and
PassageRetrieval, 1024 for Qasper, and 512 for TriviaQA. Page-size differences have little impact in
most test-cases; however, ARKVALE-16 often outperforms ARKVALE-32 when budgets are tight, as
it selects more pages under the same limited budget, enhancing the chances of hitting vital tokens.

6.4 Passkey Retrieval Results

Table 1: Accuracy of passkey retrieval tasks
Context Length 10k 20k 30k

Cache Budget 512 1024 2048 4096 512 1024 2048 4096 512 1024 2048 4096

StreamingLLM [58] 0% 5% 15% 40% 0% 0% 5% 20% 0% 0% 5% 10%
H2O [64] 5% 5% 15% 40% 0% 5% 5% 20% 5% 5% 5% 15%
TOVA [40] 5% 10% 20% 40% 5% 5% 10% 20% 5% 5% 5% 15%
ARKVALE 100% 95% 100% 95% 95% 100% 100% 100% 100% 95% 95% 100%

We further examine the accuracy of ARKVALE under long-range dependency scenarios in detail.
We employ the passkey retrieval task [39] as our benchmark. We establish three context lengths
for our tests: 10k, 20k, and 30k. For each context length, we generate 20 unique test cases, each
with the passkey inserted at depths corresponding to 0%, 5%, ..., up to 95% of the text’s length.
Following the setup in Section §6.3, we compare ARKVALE against StreamingLLM [58], H2O [64],
and TOVA [40]. Similarly, we adopt two-phase prefill for input texts to prevent OOM incidents of
H2O and TOVA and more effectively evaluate each method’s long-range dependencies handling.

The results are shown in Table 1. Baselines, which permanently evict some tokens, risk discarding
passkey-related information during inference, leading to accuracy falling short of 50% and declining
further as the context length increases or the cache budget decreases. In contrast, ARKVALE examines
the importance of evicted tokens (pages) and promptly recalls vital ones, thereby maintaining a stable
passkey retrieval accuracy above 95% across all tested context lengths and cache budgets.
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6.5 Performance Results
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Figure 9: Decoding latency breakdown and achievable maximum throughput with page-size=32 and
different seq-lens & cache budgets compared to model with full KV cache.

We set up test-cases with lengths close to 10k, 20k, and 30k from GovReport [28] in LongBench [9]
and examined ARKVALE’s inference latency with settings of a batch-size=4, page-size=32, and KV
cache budgets of 512, 1024, 2048, and 4096. Figure 9a shows the results. Here, "Full" refers to the
baseline without KV cache eviction, whereas "Estimate," "Select," and "Recall" denote the overhead
for estimating page importance, choosing pages for computations and evictions, and recalling pages
from CPU memory, respectively. ARKVALE outperforms the baseline across all the tested text
lengths, reaching up to 2.2× speedup (1.7× in average). The main bottleneck of the baseline is the
full-attention, whose latency grows linearly with seq-len, whereas our attention’s latency is mainly
governed by the fixed cache budget. Our extra latency overhead mostly arises from estimating
importance, which grows linearly with the #pages = seq-len

page-size . Recalling, conversely, adds small
overhead (especially when seq-len is large and cache-budget is small), consistent with the discussion
in §5.1.

We further compare the achievable maximum throughput in serving scenarios of ARKVALE versus
the baseline under a 40 GB memory limit for KV cache. Figure 9b shows the results. Our throughput
reaches up to 4.6× (3.5× in average) to that of baseline. This achievement is not only due to the
reduced inference latency but also to a decreased per sample memory usage of the KV cache, enabling
larger batch-size to enhance weight sharing to lessen the average latency of Linear computations per
sample.

7 Limitation

The limitation of ARKVALE mainly lies on storing a backup for each KV cache page in external
memory (typically the CPU memory). Although the latency of data transfer for backup during
decoding phase can be hided by asynchronous copy, the backup latency during prefilling phase is
hard to completely overlapped. Also, the backups may occupy much CPU memory. When the CPU’s
memory capacity is insufficient, these backups may need to be offloaded to disk storage.

8 Conclusion

In this paper, we propose ARKVALE, a method designed for managing KV cache eviction and
recall. It organizes KV cache tokens into pages, backs them up, and creates summaries, enabling
the recognition of page importance to recall vital pages evicted before. Our method performs well
on various long context tasks with few accuracy loss under a cache budget of 2k∼4k and speeds up
decoding latency up to 2.2× and boosts decoding throughput up to 4.6× in long-context scenarios.
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• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon. “

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The design of our method is comprehensively discussed in §5 and the experi-
ment setup is detailed in §6.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: Due to some constraints, our code is currently not available for open access.
Nonetheless, our design is thoroughly discussed in §5.
Guidelines: For some reasons, we cannot open-source our code now.

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experiment setup is outlined in §6.1. Additional details on specific settings
are also provided for each experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: In this paper’s experiments, metrics for model performance (F1, Rouge-L,
Accuracy) do not require error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The experiment environment is detailed in §6.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper does not entail ethical risks.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: Due to space constraints, we don’t delve into the broader impacts within the
main text. In a nutshell, our work positively contributes to the wider application of LLMs
by reducing inference latency and memory usage while maintaining accuracy.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: In §6.1, we cite the methods we compare to and the datasets we use and specify
versions of the software tools employed.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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