

ArkVale: Efficient Generative LLM Inference with Recallable Key-Value Eviction

Renze Chen¹, Zhuofeng Wang¹, Beiquan Cao¹, Tong Wu¹, Size Zheng¹, Xiuhong Li¹, Xuechao Wei¹, Shengen Yan², Meng Li¹, Yun Liang¹

¹Peking University ²Infinigence-Al

There are various long-form contents in our daily lives.

A research paper A gif meme

A novella

A short video

A novel

An EP of an anime

~8k tokens

~32k tokens

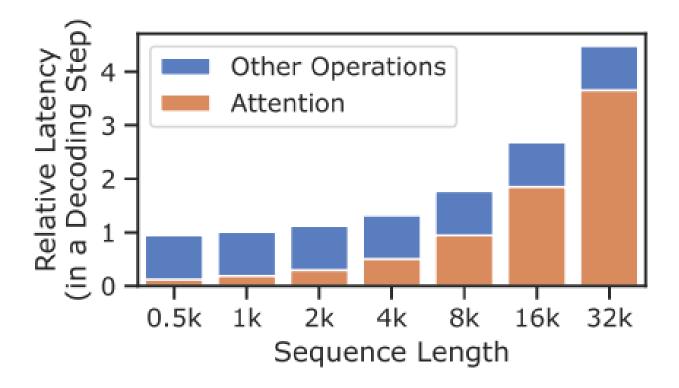
~128k tokens

Context-length supported by LLMs also grows rapidly

4k tokens 32k tokens 128k tokens

Impact of Long Context

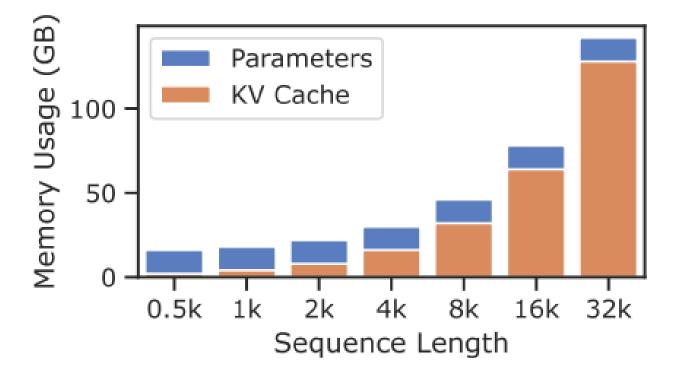
Long context attention can be the latency bottleneck of LLM decoding



LongChat-7b-v1.5-32k (batch-size=8)

Impact of Long Context

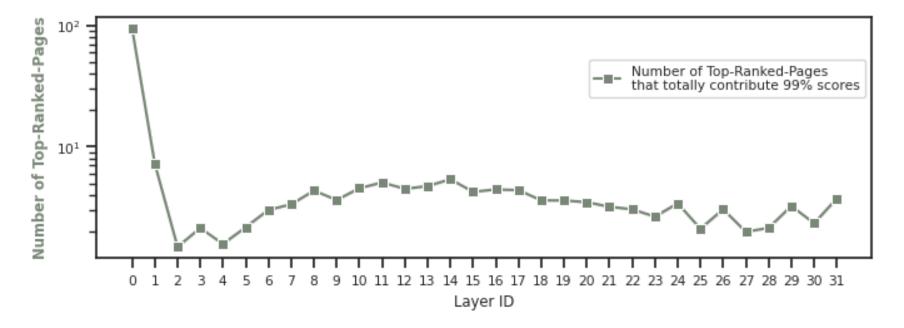
Long context can be the memory bottleneck of LLM decoding, which hampers the use of larger batch-size for serving.



LongChat-7b-v1.5-32k (batch-size=8)

Observation: Token-level Sparsity of KV Cache

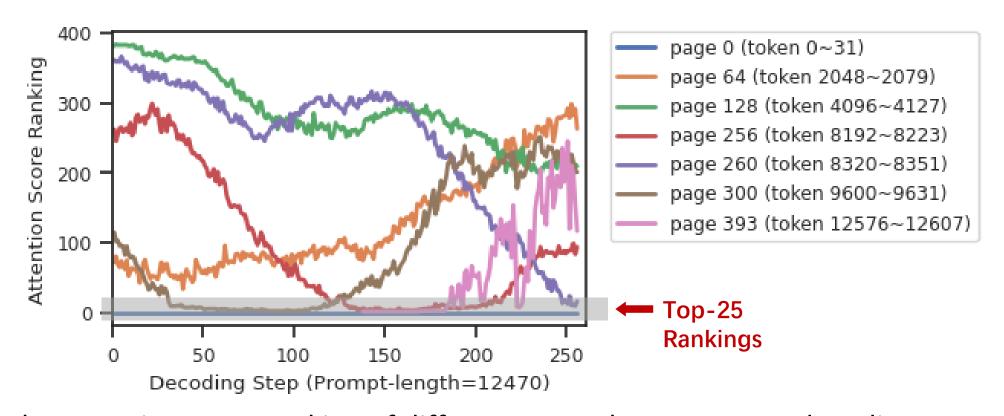
♦ In most LLM layers, less than 10 KV-cache pages (page-size=32) contributing over 99% of attention scores.



We can only keep those important tokens to save memory and make attention computation more efficient.

Observation: Dynamism of Token Importance

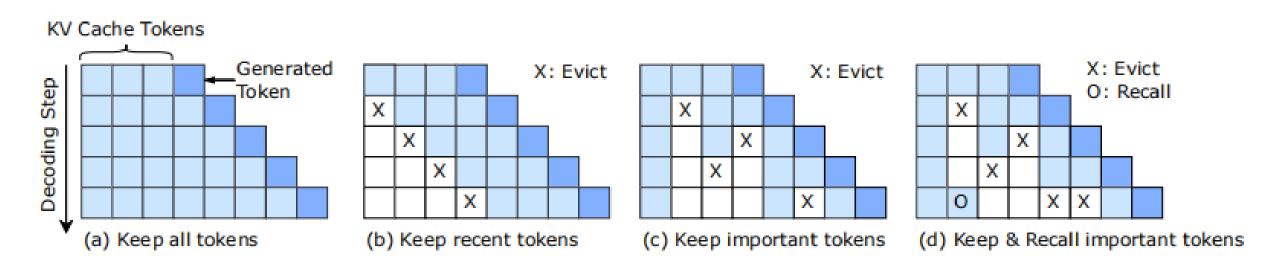
Importance of KV-cache token/page can dynamically change overtime



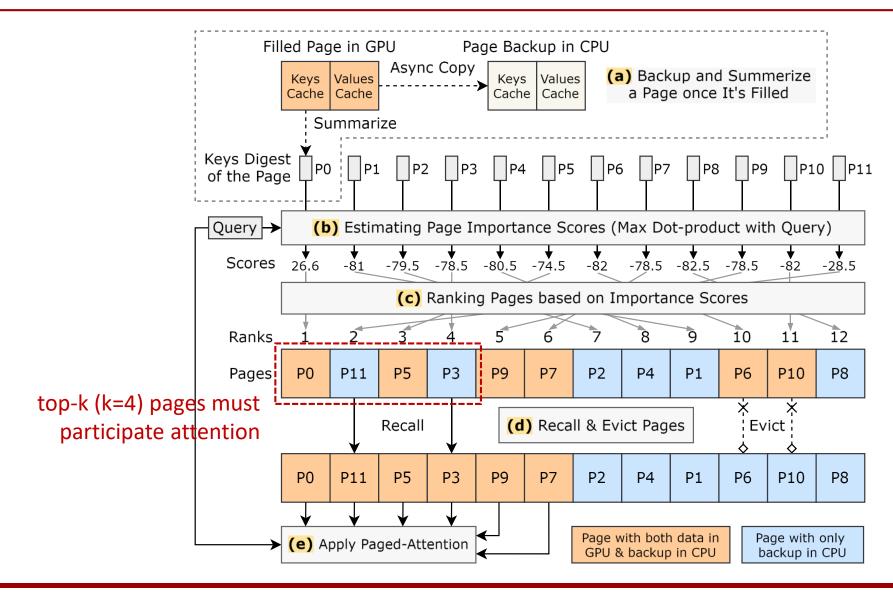
The attention score ranking of different KV-cache pages over decoding steps.

Observation: Dynamism of Token Importance

- Previous works permanently evict unimportant tokens based on history attention scores, but the evicted tokens may be important in the future.
- We propose a method named ArkVale to properly recall important tokens as well as evict unimportant ones during LLM decoding.

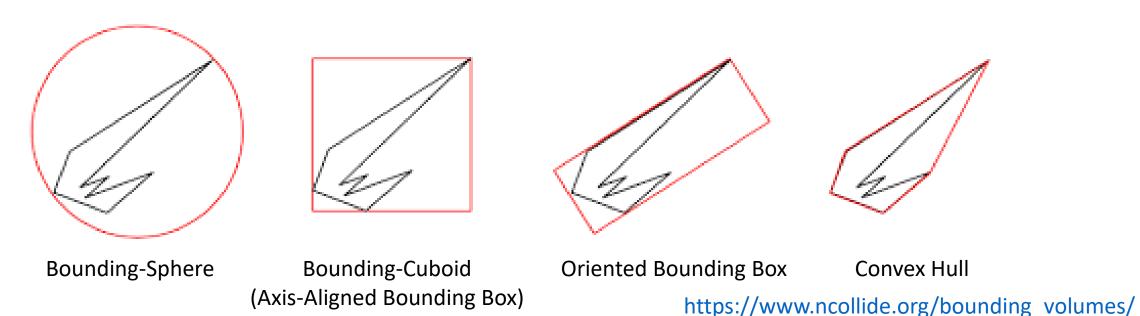


ArkVale: Workflow Overview

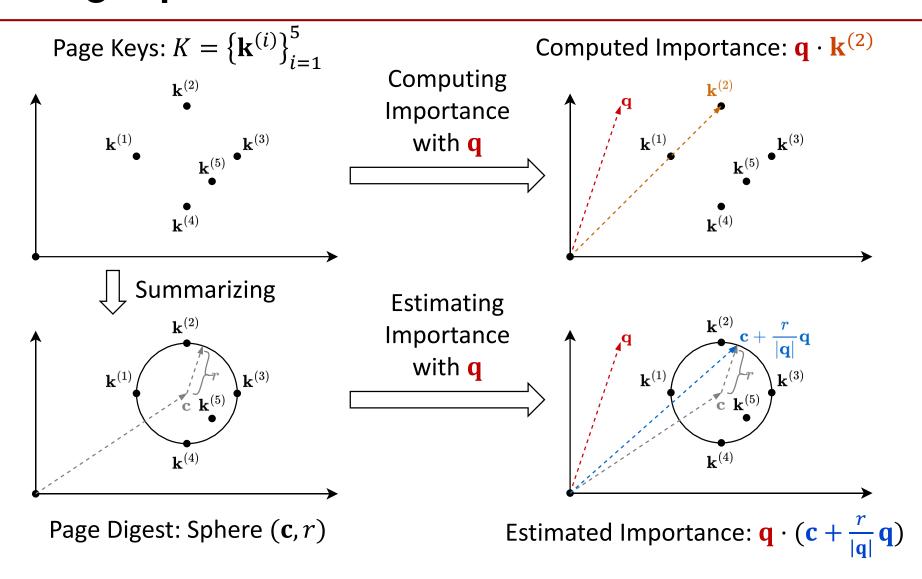


Page Summarization & Importance Estimation

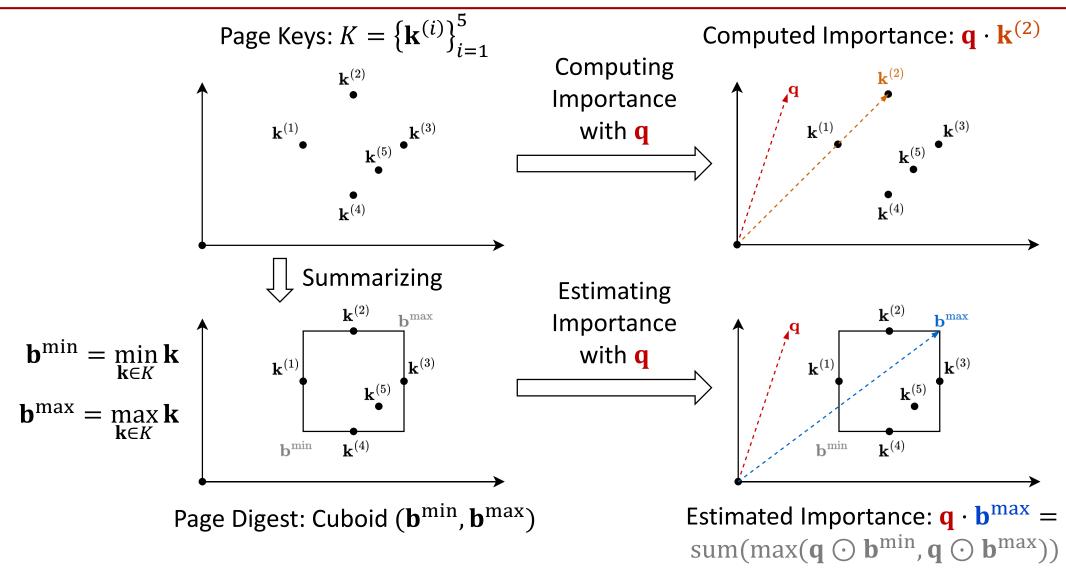
- ♦ **Definition:** For a page with keys $K = \{\mathbf{k}^{(i)}\}_{i=1}^n (\mathbf{k}^{(i)} \in \mathbb{R}^d)$, and a query $\mathbf{q} \in \mathbb{R}^d$, the *page importance* of K in terms of \mathbf{q} is defined as $\max_{\mathbf{k} \in K} \mathbf{q} \cdot \mathbf{k}$
- ♦ Observation: $\mathbf{k}' = \underset{\mathbf{k} \in K}{\operatorname{argmax}} \mathbf{q} \cdot \mathbf{k}$ must be one of the "outmost" points of K
- ♦ **Solution:** We can use the concept of *bounding-volume* (from computer graphics area) for page summarization and importance estimation.



Bounding-Sphere for Summarization & Estimation



Bounding-Cuboid for Summarization & Estimation



Platform

Intel(R) Xeon(R) Gold 6348 CPUs
NVIDIA A100 80GB PCIe GPU

Baseline	Method
Origin/Full	Without KV-cache eviction
StreamingLLM (ICLR'23)	Retain initial tokens + recent tokens
H2O (NIPS'23)	Evict tokens based on history scores
TOVA	Evict tokens based on history scores

Benchmark

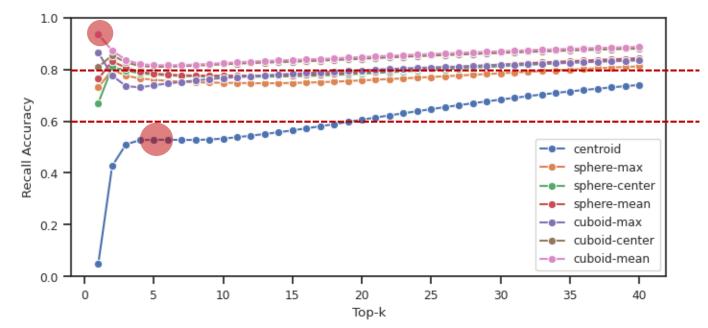
Long-Bench

Base Model

LongChat-v1.5-32k

Importance Estimation Accuracy

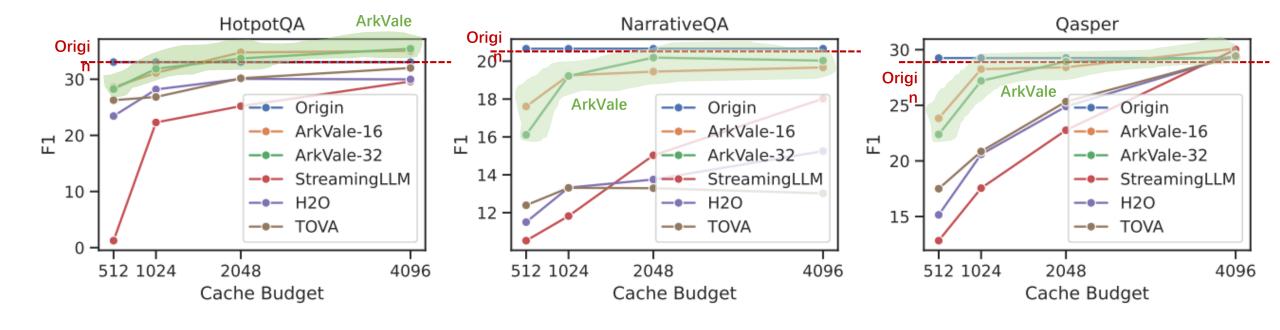
- ◆ Baseline method (centroid) cannot achieve even 60% top-5 recall accuracy.
- \diamond Our methods can achieve 60% top-k recall accuracy for all k.
- \diamond Our cuboid-mean method ensure 95% top-1 recall accuracy, and can achieve 80% top-k recall accuracy for all k.



Top-k recall accuracy of different importance estimation methods

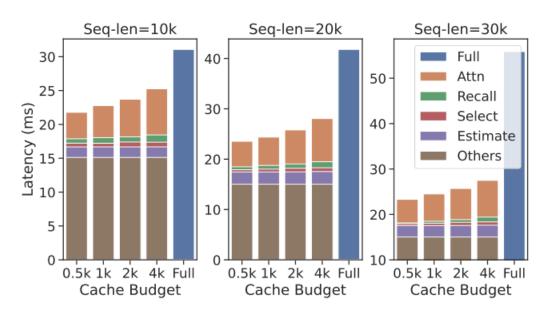
Part of Evaluation Results on Long-Bench

- ◆ArkVale can surpass all baselines with different datasets and cache-budgets.
- ArkVale can approach or even surpass "Origin".
- ♦ ArkVale-16 (page-size=16) usually outperforms ArkVale-32 (page-size=32).



Performance Evaluation

- ♦ Allocate 40 GB GPU memory for KV-cache (and page digests) in A100 GPU.
- Compared to baseline, ArkVale can achieve up to 2.2x decoding speedup.
- Compared to baseline, ArkVale can achieve up to 6x decoding throughput.



Seq-len=10k Seq-len=20k Seq-len=30k 350 -350 400 -Relative Throughput 300 300 250 250 200 200 150-150-100 100-50 50 0.5k1k 2k 4k Full 0.5k1k 2k 4k Full 0.5k1k 2k 4k Full Cache Budget Cache Budget Cache Budget

(a) Latency Breakdown (batch-size=4)

(b) Throughput Comparison

- ◆ ArkVale: Efficient Generative LLM Inference with Recallable Key-<u>Val</u>ue <u>E</u>viction
- ➤ Page-based KV-cache Eviction & Recall
- > Page Summarization & Importance Estimation based on Bounding-volume
- ArkVale performs well on various long context tasks with few accuracy loss under a cache budget of 2k~4k and speeds up decoding latency by 2.2× and boosts throughput to 6× in long-context scenarios.

Scan to access our code

Our code is now open-sourced at https://github.com/pku-liang/ArkVale

Thanks for listening! E-mail us to ask follow-up questions: crz@pku.edu.cn