

ArkVale: Efficient Generative LLM Inference with Recallable Key-Value Eviction

¹Peking University ²Infinigence-Al

終 1. Motivation

Impact of Long-context

- which hampers the use of larger batch-size for serving.

. Observation |終 2

In most layers, less than 10 KV-cache pages contributing most attention scores.

Importance of KV-cache token/page can dynamically change overtime

(a) Bounding-sphere need to record the center c and the radius r.

Figure 6: Summarize page keys $\{\mathbf{k}^{(i)}\}_{i=1}^{5}$ into their bounding-volume (sphere/cuboid). We can estimate the max-dot-product between query q and keys $\{\mathbf{k}^{(i)}\}_{i=1}^{5}$ using the bounding-volume.

Renze Chen¹, Zhuofeng Wang¹, Beiquan Cao¹, Tong Wu¹, Size Zheng¹, Xiuhong Li¹, Xuechao Wei¹, Shengen Yan², Meng Li¹, Yun Liang¹ Code: https://github.com/pku-liang/ArkVale E-mail: crz@pku.edu.cn

🔆 3. Techniques

Page Summarization & Importance Estimation using Bounding-volume

Bounding-Sphere **Bounding-Cuboid** (Axis-Aligned Bounding Box)

Workflow Overview

Oriented Bounding Box

终 4. Evaluation

Top-k recall accuracy of different importance estimation methods

Baseline method (centroid) cannot achieve even 60% top-5 recall accuracy. Our cuboid-mean method ensure 95% top-1 recall accuracy, and can achieve 80% top-k recall accuracy for all k.

Part of Evaluation Results on Long-Bench

• ArkVale can surpass all baselines with different datasets and cache-budgets. • ArkVale can approach or even surpass "Origin". • ArkVale-16 (page-size=16) usually outperforms ArkVale-32 (page-size=32).

(a) Latency Breakdown (batch-size=4)

(b) Throughput Comparison