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1. Motivation
• Long context attention can be the bottleneck of LLM decoding
• Long context can be the memory bottleneck of LLM decoding, 

which hampers the use of larger batch-size for serving.
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3. Techniques

In most layers, less than 10 KV-cache pages contributing most attention scores.
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Importance of KV-cache token/page can dynamically change overtime

LongChat-7b-v1.5-32k page-size=32

2. Observation
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4. Evaluation
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Page Summarization & Importance Estimation using Bounding-volume

• Baseline method 
(centroid) cannot 
achieve even 60% 
top-5 recall accuracy. 

• Our cuboid-mean 
method ensure 95% 
top-1 recall accuracy, 
and can achieve 80% 
top-𝑘 recall accuracy 
for all 𝑘.
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Part of Evaluation Results on Long-Bench 

• ArkVale can surpass all baselines with different datasets and cache-budgets.
• ArkVale can approach or even surpass “Origin”.
• ArkVale-16 (page-size=16) usually outperforms ArkVale-32 (page-size=32).

Decoding Latency & Throughput Evaluation

• Allocate 40 GB GPU memory for KV-cache (and page digests) on A100 GPU.
• Compared to baseline, ArkVale can achieve up to 2.2x decoding speedup.
• Compared to baseline, ArkVale can achieve up to 6x decoding throughput.

Impact of Long-context
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